

Unified Forecasting System results from recent NOAA/Hazardous Weather Testbed Spring Forecasting Experiments

Unifying Innovations in Forecasting Capabilities Workshop 18-22 July, College Park, MD

Adam J. Clark^{2,4}, Burkely T. Gallo^{1,3}, Louis J. Wicker^{2,4}

¹NOAA/NWS/NCEP Storm Prediction Center, Norman, Oklahoma
²NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
³Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
⁴School of Meteorology, University of Oklahoma, Norman, Oklahoma

2021-22 HWT Spring Forecasting Experiments

SFEs are five-week experiments jointly organized and facilitated by SPC and NSSL

Goals include:

- Testing & evaluation of emerging technologies for severe weather prediction
- Accelerating R2O; developing & strengthening O2R pathways
- Facilitating experiments to: optimize deterministic and ensemble CAMs informing Unified Forecast System Development [using Community Leveraged Ensemble (CLUE) framework].

HWT SFE Model Contributions

Year

UFS-related evaluations 2021-22

UFS-related evaluations

UFS-related evaluations in this talk

2021			UFS-rela
Group A: Calibrated Guidance	Group B: Deterministic CAMs	Group C: CAM Ensembles	Group D: Medley
Days 1 & 2 Tornado	Deterministic Flagships	00Z Ensembles	ISU ML Severe Wind Probabilities
00Z HREF-based Tornado	FV3-LAM Domain Comparison	12Z Ensembles	NCAR ML Convective Mode Probabilities
Days 1 & 2 Hail	FV3-LAM DA Comparisons	Hourly Updating CAM Ensembles	Mesoscale Analysis Background
00Z HREF-based Hail	FV3 Physics Suites	Valid-Time-Shif ting DA	Mesoscale Analysis DA frequency
Days 1 & 2 Wind	FV3 Stochastic Physics	WoFS vs. HRRR-TL	Storm Scale Analyses
00Z HREF-based Wind		Deterministic WoFS	GEFS vs. SREF Days
		ML-based Calibrated	

Group A: Calibrated Guidance	Group B: Deterministic CAMs	Group C: CAM Ensembles	Group D: Medley
GEFS-based hazard guidance (Tor, Wind, Hail)	Deterministic Flagships	00Z Ensembles	ISU ML Severe Wind Probabilities
Days 1 & 2 hazard guidance (Tor, Wind, Hail)	RRFSp2e vs. HRRR	RRFSp2e vs. HREF	NCAR ML Convective Mode Probabilities
00Z HREF-based hazard guidance (Tor, Wind, Hail)	FV3-LAM DA Comparisons	FV3-LAM DA Comparisons	Mesoscale Analysis Background
OU-MAP flow-dependent hazard guidance (Tor, Wind, Hail)	FV3 Physics Suites	TTU ensemble Subsetting	Storm Scale Analyses
00Z HRRR NCAR NN hazard guidance (Tor, Wind, Hail)	1-km vs. 3-km NSSL-WRF	WoFS: Number of Members & time-laging	GEFS vs. SREF Days 2 & 3

SFE 2021: Deterministic Flagships

Goal: Gauge progress for severe weather predictions for a single deterministic model from each SFE contributor relative to HRRRv4.

UH and composite reflectivity evaluated at 18, 00, & 06 UTC.

Environmental fields (T, Td, & CAPE) evaluated @ 18 UTC.

SFE 2021: Deterministic Flagships

Storm

Prediction Center

<u>Results</u>

- HRRR clearly performed best.

- All models struggled with SBCAPE magnitude.
- Cool biases in FV3 runs.

SFE 2022: Deterministic Flagships

Goal: Gauge progress for severe weather predictions for a single deterministic model from each SFE contributor relative to HRRRv4.

Storm

Prediction Center

SFE 2022: Deterministic Flagships

Mean Ranking for Cases with All Model Data (12)

Results: Rankings distribution

- HRRRv4 most frequently rated #1
- GFDL followed by NSSL-FV3 most frequently rated worst

<u>Tentative conclusion</u>: RRFS prototypes approaching utility of HRRRv4, and relative skill improved from 2021

Results: Mean rankings

- HRRRv4, RRFSp1, & RRFSp2 very similar
- GFDL and NSSL FV3 clearly the worst

Ranking Distribution for Cases with All Model Data (12)

SFE 2021: 00Z CAM Ensembles

Goal: Gauge progress for severe weather predictions for 00Z initialized CAM ensembles relative to HREF.

Methods

Compare 24-h summary of 2-5 km UH along w/ LSRs. "Rolling" 4-h UH also available & 40 DbZ reflectivity probs.

Subjectively rate forecast quality on scale of 1-10.

SFE 2021: 00Z CAM Ensembles

<u>Results</u>

- HREF performs best w/ GSL RRFS (HRRRDAS ICs) a close second.
- Participant comments:
 - HREF and GSL RRFS predicted locations of severe weather very accurately.
 - HREF and RRFS Cloud had largest spread or broadest coverage of probabilities.
 - MAP runs "too aggressive"
- HREF continues to be formidable baseline.

SFE 2022: 00Z CAM Ensembles

Goal: Gauge progress for severe weather predictions for 00Z initialized CAM ensembles relative to HREF.

Methods

Compare 24-h summary of 2-5 km UH along w/ LSRs. "Rolling" 4-h UH also available & 40 DbZ reflectivity probs.

Changes from SFE2021

- Comparisons were "blind"
- Rankings instead of ratings.

SFE 2022: 00Z CAM Ensembles

7 cases where only RRFS MixPhys was missing

- HREF and RRFSp2e average ranking very similar with RRFSp2e having slight advantage

9 cases where all 5 ensembles were available

- HREF and RRFSp2e average ranking very similar with HREF having slight advantage

SFE 2022: RRFSp2e vs. HREF

Goal: Provide comprehensive evaluation of environment and storm attribute fields in RRFSp2e compared to HREF.

Participants were asked: For the following ensemble mean environmental fields (T, Td, & CAPE) and UH, please rate the performance of RRFSp2e relative to HREF for the time periods 17-20, 21-00, & 01-04Z.

This was the 1st time that ensemble mean environment fields have been examined in the HWT.

SFE 2022: RRFSp2e vs. HREF

Rate RRFSp2e relative to HREF

2 = Much better, 1 = Better, 0 = About the same, -1 = Worse, -2 = Much worse

<u>**Temperature:**</u> HREF was clearly better; likely result of cool bias in RRFSp2e that was most prevalent earlier in the forecast.

Dewpoint: RRFSp2e was clearly better; likely result of dry bias in HREF that was most prevalent earlier in the forecast.

<u>CAPE:</u> RRFSp2e was clearly better with magnitudes that more closely matched observations.

<u>UH:</u> Differences were mostly small.

SFE 2021: GEFS vs. SREF Days 2 & 3

Goal: Evaluate severe weather fields (e.g., Td, MLCAPE, CAPE/Shear combined probabilities, & STP) and calibrated thunder and severe weather probabilities to gauge GEFS readiness to replace SREF.

Overall, GEFS performed as well as SREF for most severe weather fields

- □ It appears that significant progress has been made in the last year.
- HWT evaluations indicate that UFS-based systems are generally performing comparable to the operational systems they will replace or subsume.
- Important caveats/limitations: Limited sample & objective statistics not computed yet. Also initial operational versions of FV3 haven't been received well.
- Warn-on-Forecast team at NSSL is getting unacceptable results with FV3 (big problem with spurious storms at model initialization and unrealistic storm characteristics).

* "SPC forecasters are extremely concerned and skeptical about moving to an FV3-based CAM ensemble to replace the current HRRR and HREF"

END

