Academia and the UFS: Lessons from the Transition of the Great Lakes Operational Forecast System (GLOFS)

Eric J. Anderson, Ph.D.

Hydrologic Science & Engineering Civil & Environmental Engineering Department of Geophysics **Colorado School of Mines**

Why GLOFS? | UFS Coastal Applications

GLOFS | Mission

GLOFS Lessons | History

- 5 Individual OFS systems (1 per lake)
- Short-range forecast guidance
 - Water level
 - Currents
 - Water Temperature
- •v1 2004-2006 GLERL -> NOS (POM)
- •v2 2012-2022 FVCOM upgrade

Great Lakes Operational Forecast System (GLOFS)

Anderson et al., 2018, Journal of Marine Science and Engineering, 6(123), doi:10.3390/jmse6040123

GLOFS Lessons | Relationships

GLOFS Lessons | Relationships

- Core relationships between academic partners and operators is key
 - Under pre-UFS model, transition likely not possible if not for existing relationships
- R2O team is often 1-person deep at many levels
 - Tenuous at Research end of spectrum

GLOFS Lessons | Timeline

Time

CIGLR Sci/Postdocs

Anderson et al., 2018, JMSE, doi:10.3390/jmse6040123

Great Lakes Operational Forecast System (GLOFS)

GLOFS Lessons | Timeline

2007 FVCOM application to Freshwater (Great Lakes)

NRC Postdoc

2012 v2 GLOFS (FVCOM upgrade)

- 2016 LEOFS (Lake Erie)
- 2019 LMHOFS (Mich-Huron)
- 2022 LSOFS/LOOFS (Superior-Ontario)
- 2022 GLOFS-Ice (FVCOM-CICE)

CIGLR Sci/Postdocs

Compare with Weather Forcing timeline

*Each change in weather forcing can impact hydrodynamic performance

GLOFS Lessons | Funding

*not including model developer (e.g., FVCOM) support

GLOFS Lessons | Funding

*not including model developer (e.g., FVCOM) support

GLOFS Lessons | Baseline support

- Occasional funding support for FTEs, but...
- Transition success relies on *existing*
 - Observations (thank you NDBC, GLOS, GLERL!)
 - Academic computing
 - GLERL computing (10 years of pseudo-operations and counting)
 - Additional/serendipitous funding
 - Stakeholder participation
 - Collaborators going above and beyond

Existing Coastal observations

GLOFS Lessons | Bonus Outcomes

- Pre-UFS integration of coastal(lake) and short-range weather forecasts
- Foundation: existing relationships
 - OAR/GLERL
 - OAR/GSL
 - CIGLR / University of Michigan
 - NOS
 - NWS/NCEP, NWS/WFO-Detroit
- Funding:
 - JTTI Transition support

Photograph: Lindsay DeDario/Reuters

- November 17-19, 2014
- 2-3m snow fell in Buffalo, NY
- 13 fatalities

GLOFS Lessons | GLOFS-HRRR Coupling

Asynchronous Coupling

Wind, Air Temp, Pressure,

atc

Water Temp, Ice

Water Temp, Ice Temp, Ice Fraction

GLOFS Lessons | GLOFS-HRRR Coupling

Manome et al., J. Hydrometeorology, doi:10.1175/JHM-D-20-0079.1

Summary

- GLOFS transition to operations has spanned pre-UFS to UFS era
- Success depends on
 - Relationships between NOAA and Academia
 - Funding across R2O spectrum
 - Timelines that empower project partners
 - Existing infrastructure
 - *Belief* in NOAA mission, the *will* to see implementation *Fortunate to have*

Eric J. Anderson, Ph.D., ejanderson@mines.edu Hydrologic Science & Engineering Civil & Environmental Engineering Department of Geophysics Colorado School of Mines

Fortunate to have

Fortunate to have

Consistent limitation

Consistent limitation