Operational Implementation of NOAA's new Generation Hurricane Prediction System: Hurricane Analysis and Forecast System (HAFSv1)

Zhan Zhang¹, Xuejin Zhang², Bin Liu³, Avichal Mehra¹, Vijay Tallparagada¹, S. Gopalakrishnan², Frank D. Marks, Jr²

¹NOAA/NWS/NCEP/EMC, College Park, MD ²NOAA/AOML/Hurricane Research Division, Miami, Florida ³Lynker at NOAA/NWS/EMC, College Park, MD

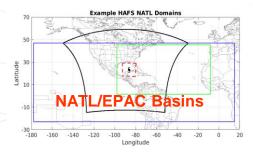
Acknowledgement of ALL Active HAFS Developers

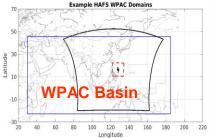
Atmospheric model dynamics/configurations/workflow NCEP/EMC Avichal Mehra, Zhan Zhang, Bin Liu, Dusan Jovic, JungHoon Shin,Vijay Tallapragada, Biju Thomas, Jun Wang AOML/HRD Xuejin Zhang, Ghassan Alaka, S. Gopalakrishnan, William Ramstrom DTC Kathryn Newman, Mrinal Kanti Biswas, Linlin Pan GFDL Rusty Benson, Lucas Harris, Joseph Mouallem	Ocean/Wave coupling through CMEPS NCEP/EMC Maria Aristizabal, Matthew Masarik, Jessica Meixner, John Steffen AOML/HRD Lew Gramer AMOL/PhOD Hyun-Sook Kim ESMF Rocky Dunlap, Dan Rosen, Gerhard Theurich, Ufuk Turuncoglu,	Data Assimilation NCEP/EMC Li Bi, Yonghui Weng, Ting Lei, Shun Liu, Daryl Kleist AOML/HRD Jason Sippel, Sarah D. Ditchek OU Xu Lu, Xuguang Wang UM/CIMAS Altug Aksoy, Dan Wu UMD Joseph Alan Knisely, Kenta Kurosawa, Jonathan Poterjoy SUNY/U at Albany Ryan Torn, Eun-Gyeong Yang
Model Pre- and Post-processes	Atmospheric Physics	Verification/Evaluation
NCEP/EMC George Gayno, Hui-Ya	NCEP/EMC Jongil Han, Ruiyu Sun, Xu Li,	NCEP/EMC Olivia Ostwald, Jiayi Peng, Hui Ya
Chuang, Bantwale Enyew, Qingfu Liu,	Chunxi Zhang, Weiguo Wang, Fanglin Yang	Chuang
Chuan-Kai Wang, Wen Meng, Lin Zhu,	AOML/HRD Andrew Hazelton, Xuejin	NHC Michael Brennan, Jon Martinez, Ben
Rahul Mahajan	Zhang	Trabing, David Zelinsky, Wallace Hogsett
GFDL Timothy Marchok	UAH Xiaomin Chen	JTWC Brian Strahl, Levi Cowan

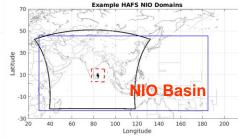
Majority of the development supported through FY18/FY19/FY22 HSUP/DSUP, JTTI, and UFS-R2O Projects

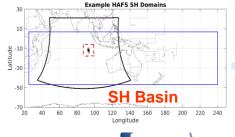
BLUF & Key Points

- Two configurations (HFSA and HFSB) of HAFSv1 became operational on June 27 2023, running along with HWRF and HMON
 - HFSA: max 7 storms for all global basins, No DA for JTWC storms
 - HFSB: max 5 storms for NHC/CPHC basins only.
 - HWRF/HMON will continue running operationally in reduced capacity (max 3 storms) and ~30 min delayed in products delivery

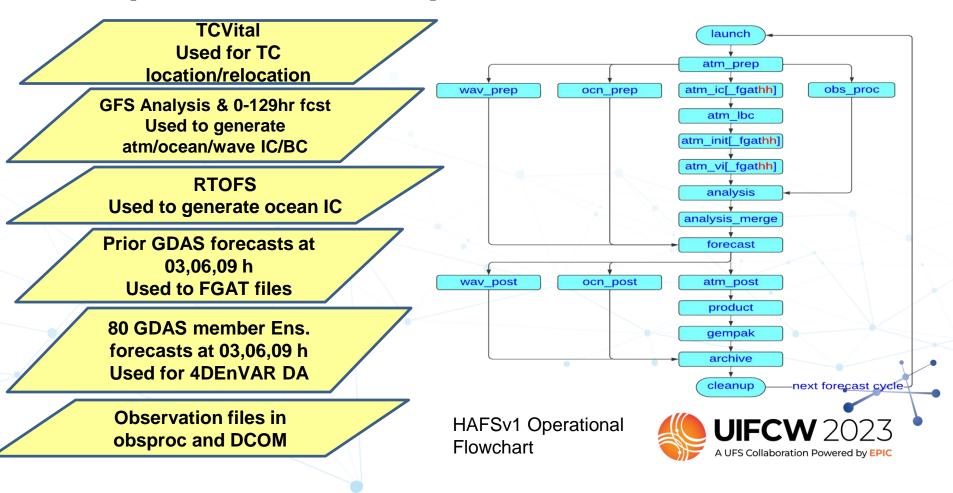

Salient features of HAFS

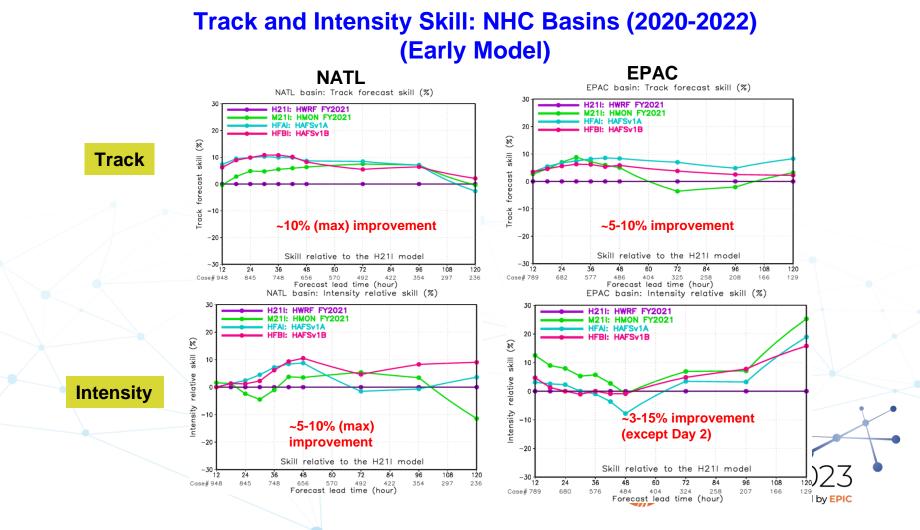

- FV3 based dyn-core
- CEMPS based ocean/wave coupling.
- Improved Vortex initialization
- 4DEnVar inner-core data assimilation
- CCPP based TC-specific physics
- Updated workflow
- Overall, evaluation metrics in skill space for HAFS v1 confirm positive improvements over operational HWRF and HMON.

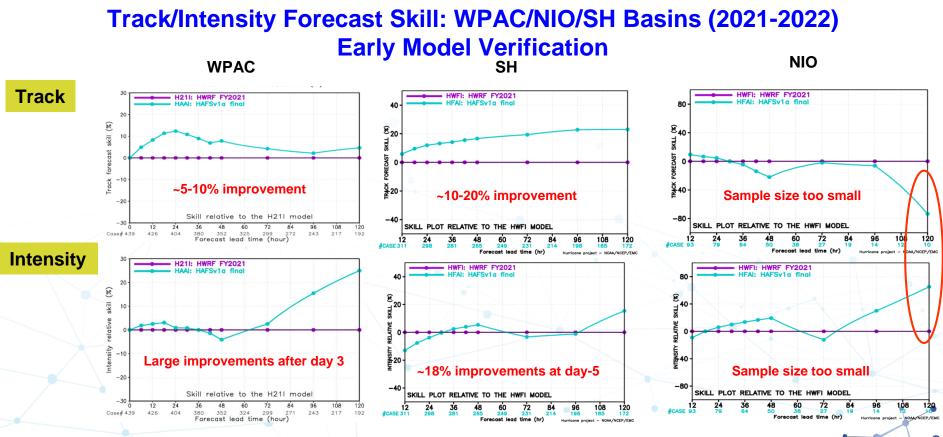



HAFSv1 Operational Configurations

HAFSv1.0	Domain	Resolution	DA/VI	Ocean/Wave Coupling	Physics	Basins
HFSA	Storm-centric with one moving nest, parent: ~78x75 deg, nest: ~12x12 deg	Regional (ESG), ~6/2 km, ~L81, ~2 hPa model top	Vmax > 50 kt warm- cycled VI and 4DEnVar DA	Two-way HYCOM, one- way WW3 coupling for NHC/CPHC basins	Physics suite-1	All global Basins NHC/CPHC/JTWC Max 7 Storms similar to HWRF
HFSB	Storm-centric with one moving nest, parent: ~75x75 deg, nest: ~12x12 deg	Regional (ESG), ~6/2 km, ~L81, ~2 hPa model top	Vmax > 40 kt warm- cycled VI and 4DEnVar DA	Two-way HYCOM <mark>No Waves</mark>	Physics <mark>suite-2</mark>	NHC/CPHC Max 5 Storms similar to HMON

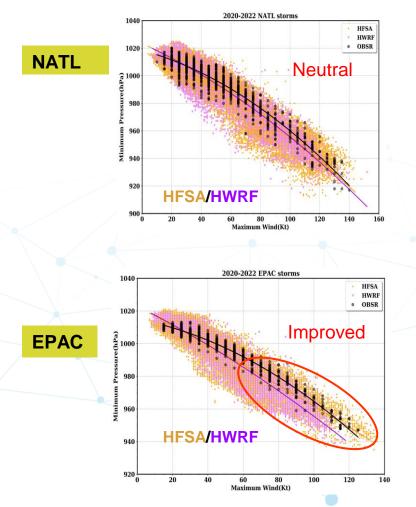


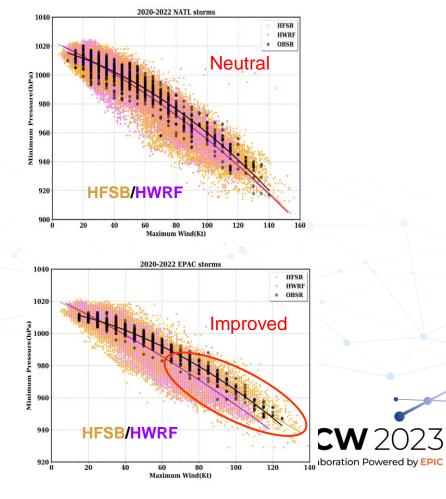

atmospheric domain, ocean domain, wave domain


HAFSv1 Physics Schemes

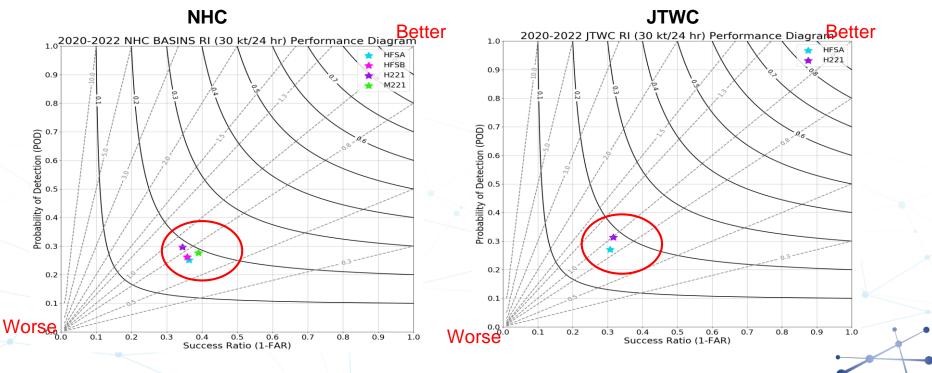
	Suite 1	Suite 2	References
Land/ocean Surface	NOAH LSM VIIRS veg type, HYCOM	NOAH LSM VIIRS veg type HYCOM	Ek et al. (2003)
Surface Layer	GFS, HWRF TC-specific sea surface roughnesses	GFS, HWRF TC-specific sea surface roughnesses	Miyakoda and Sirutis (1986); Long (1984, 1986)
Boundary Layer	Sa-TKE-EDMF, TC-related calibration, mixing length adjustments	Sa-TKE-EDMF, TC-related calibration, tc_pbl=1, mixing length adjustments	Han et al. (2019) Wang et al. (2022) Chen et al. (2022)
Microphysics	GFDL single-moment	Thompson double-moment	Lin et al. (1983) Chen and Lin (2013) Thompson et al (2008) Thompson and Eidhammer(2014)
Radiation	RRTMG Calling frequency 720 s	RRTMG Calling frequency 1800 s	lacono et al. (2008)
Cumulus convection (deep & shallow)	Scale-aware-SAS, calibrated deep convection entrainment	Scale-aware-SAS	Han et al. (2017)
Gravity wave drag	uGWPv1	uGWPv1	Alpert et al. (1988)

Upstream Data Inputs and Flowchart





Data Assimilation is turned off for JTWC basins. For WPAC/SH storms, HFSA has improved track skill over HWRF for all lead times. Intensity forecasts are also largely improved especially after Day 3. NIO sample size is small.



Pressure/Wind relationship (2020-2022)

Rapid Intensification Verification Combined NHC (NATL+EPAC) and JTWC (WPAC+SH+NIO) basins

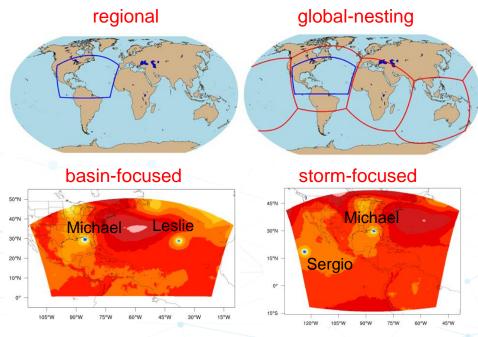
In general, HAFS RI prediction performance is similar to HWRF/HMON in both NHC and JTWC basins

Summary: Improvements for HAFS in Skill Space vs HWRF

Metric	NATL		EPAC	
	HAFS-A	HAFS-B	HAFS-A	HAFS-B
Track Skill	Mostly improved	Improved	Improved	Improved
Intensity Skill	Neutral to <i>improved</i> Improved		Neutral to <i>improved</i>	Mostly improved
Storm Size Bias	RMW neutral, mixed for 34 kt, reduced for 50 kt and 64 kt radii	RMW neutral, increased for 34 kt, reduced for 50 kt and 64 kt radii	Reduced for RMW, 34 kt, 50 kt and 64 kt radii	Reduced for RMW, 34 kt, 50 kt and 64 kt radii
RI Cases	Track errors are reduced, intensity slightly behind	Track errors are reduced , intensity slightly behind	Track errors are reduced , neutral for intensity	Track errors are reduced , intensity slightly behind
RI Metrics	Slightly behind HWRF	Slightly behind HWRF	Improved	Improved
P-W relationship	Neutral	Neutral	Improved	Improved
Waves	Neutral to <i>Improved</i>	N/A	Improved	N/A
Negative Mixed/Neutral Positive UIFCW 2023 A UFS Collaboration Powered by EPIC				

Available Configuration Options for Research

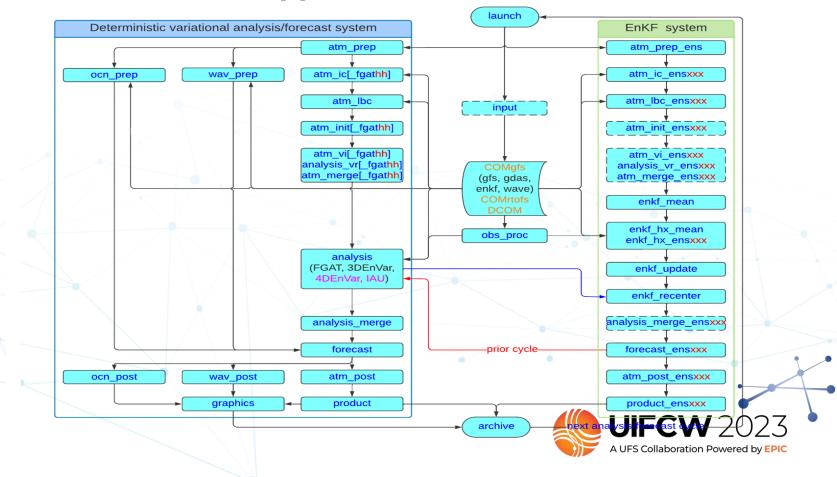
• Domain Options


- Global-nest
- Regional: Storm-Centric, Basin-Centric
- Horizontal & vertical resolutions

• VI and DA options

- Warm-start threshold
- Nest vs parent domain DA
- 3DEnVar, 4DEnVar, GDAS and/or HAFS ensembles
- Model Physics Options
 - Various model physics suites

Coupling Option


- Ocean coupling: HYCOM, MOM6
- Wave coupling: One-way, two-way coupling

Basin-centric domain can be run with zero-storm and multiple storms. The domain center is relocatable

HAFS Application Flowchart

Summary

- Evaluation metrics in skill space for both operational configurations of HAFSv1 indicate positive improvements over operational HWRF and HMON
- > Various options available for research to further development and improvement
- HAFSv1, as a UFS-based hurricane application, lays down a foundation for making further enhancements, for both research and operations with community involvement, and serves as an exemplar for the broader UFS-R2O project
- Seek more direct engagement of forecasters and the wider UFS community in active participation for model enhancements and future R2O
- Full credit to the entire EMC Hurricane team, NHC team, HRD team, DTC team and all our research and operational collaborators for successful execution of pre-implementation T&E for NOAA's next generation of Hurricane modeling systems proposed for operations

