On the Development and Evaluation of Atmospheric Model Physics for the Unified Forecast System Applications Across Scales

Fanglin Yang

Physics Group, NWS/NCEP/EMC Modeling and Data Assimilation Branch

Co-authors: EMC physics developers Jongil Han, Michael Balarge, Shrinivas Moorthi, Helin Wei, Anning Cheng, Ruiyu Sun, Jili Dong, Eric Aligo, Qingfu Liu, Weizhong Zheng, Rongqian Yang, Yihuya Wu, Wei Li, Bing Fu, Hong Guang, Bo Yang, and community collaborators Lisa Bengtsson, Jian-wen Bao, Michael Toy, Valery Yudin, Shan Sun, Benjamin Green, Tanya Smirnova, Robert Pincus, Dustin Swales, Greg Thompson, Joe Olson, Songyou Hong, Ligia Bernardet, Weiwei Li and Man Zhang

Acknowledgment: This project is a collaborative community effort. NOAA NWS/STI and OAR/WPO program offices are acknowledged for providing funding support for some of the projects described in this presentation.
NOAA is collaborating with the US weather and climate science community to develop the next generation fully coupled earth system modeling capability for both research and operational forecast applications across different temporal and spatial scales.
Physics for UFS Applications:

- Develop and improve physics parameterizations for UFS applications to reduce model systematic biases and maximize model prediction skills.
- Unify physics parameterizations for all applications across different spatial and temporal scales to speed up the R2O transition of physics innovations and to reduce the cost of operational systems maintenance.
Physics Updates for MRW/S2S Prototype #7

<table>
<thead>
<tr>
<th>Category</th>
<th>GFS.v16</th>
<th>UFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulus Convection (Shallow & Deep)</td>
<td>sa-SAS</td>
<td>Positive definite mass flux; stochastic convective organization; Improved CAPE</td>
</tr>
<tr>
<td>Surface Layer</td>
<td>GFS</td>
<td>Sea spray; optimization</td>
</tr>
<tr>
<td>PBL</td>
<td>sa-TKE-EDMF</td>
<td>Positive definite tracer advection; optimization</td>
</tr>
<tr>
<td>Non-orographic GWD</td>
<td>uGWP v0</td>
<td>uGWP.v1 (Yudin et al., 2021)</td>
</tr>
<tr>
<td>Small-scale gravity-wave drag (new)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbulence Form drag (new)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>Noah LSM</td>
<td>NOAH MP and VIIRS veg type</td>
</tr>
<tr>
<td>Aerosol</td>
<td>OPAC</td>
<td>MERRA2</td>
</tr>
<tr>
<td>Fractional grid</td>
<td>N/A</td>
<td>compositing albedo and emissivity; fractional grid enabled surface cycle; z_bot calculation for coupling stability etc</td>
</tr>
</tbody>
</table>

Updated

New
Physics Updates for MRW/S2S Prototype #8

<table>
<thead>
<tr>
<th></th>
<th>GFS.v16</th>
<th>UFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphysics</td>
<td>GFDL MP</td>
<td>Thompson MP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● improve computational stability (inner-loop),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● optimize cloud cover and radiative fluxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● use Semi-Lagrangian sedimentation for rain and graupel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● develop cloud-aerosol interaction scheme</td>
</tr>
<tr>
<td>Radiation (LW &SW)</td>
<td>RRTMG</td>
<td>RRTMGp (pending on improvement in computational efficiency)</td>
</tr>
<tr>
<td>Ice climatology</td>
<td>CFSR (model)</td>
<td>IMS-NIC (observation & retrievals)</td>
</tr>
<tr>
<td>land/sea/lake masks</td>
<td>MODIS</td>
<td>VIIRS</td>
</tr>
</tbody>
</table>

- Convection, PBL, Noah-MP, GWD parameterizations included in P7 are further updated to improve their performances for both coupled and uncoupled models at C384 and C768 resolutions.
- Some of the schemes are also tested and evaluated in RRFS and HAFS for physics unification.
<table>
<thead>
<tr>
<th>Physics</th>
<th>SCHEME</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBL/Turbulence</td>
<td>MYNN-EDMF</td>
<td>Olson et al. (2019)</td>
</tr>
<tr>
<td>Surface Layer</td>
<td>MYNN</td>
<td>Olson et al. (2021)</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Thompson-Eidhammer</td>
<td>Thompson and Eidhammer (2014)</td>
</tr>
<tr>
<td>Climatological Aerosols</td>
<td>Thompson-Eidhammer</td>
<td>Thompson and Eidhammer (2014)</td>
</tr>
<tr>
<td>Smoke and Dust</td>
<td>RAVE fire data, FENGSA scheme for dust</td>
<td>Ahmadov et al., Freitas et al., 2010</td>
</tr>
<tr>
<td>Shallow Convection</td>
<td>MYNN-EDMF</td>
<td>Olson et al. (2019) Angevine et al. (2020)</td>
</tr>
<tr>
<td>Land Model</td>
<td>Noah-MP</td>
<td>Niu et al. (2011)</td>
</tr>
<tr>
<td>Large Lakes</td>
<td>FVCOM</td>
<td>Fujisaki-Manome et al. (2020)</td>
</tr>
<tr>
<td>Small Lakes</td>
<td>FLake/CLM Lake</td>
<td>Mironov (2008)/Subin et al. (2012), Mallard et al. (2015)</td>
</tr>
<tr>
<td>Near-Surface Sea Temperature</td>
<td>NSST</td>
<td>Fairall et al. (1996), Derber and Li (2018)</td>
</tr>
<tr>
<td>Long and Short Wave Radiation</td>
<td>RRTMG</td>
<td>Iacono et al. (2008), Mlawer (1997)</td>
</tr>
</tbody>
</table>
Model Physics for 2022 HAFS Real-Time Experiments

<table>
<thead>
<tr>
<th></th>
<th>Suite 1</th>
<th>Suite 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulus Convection</td>
<td>sa-SAS: Positive definite mass flux; Stochastic convective organization; Optimization for CAPE</td>
<td>*sa-SAS: Positive definite mass flux; Stochastic convective organization; Optimization for CAPE, TC-specific tuning</td>
</tr>
<tr>
<td>(Shallow & Deep)</td>
<td>** cumulative convective**</td>
<td>** cumulative convective**</td>
</tr>
<tr>
<td>Surface Layer</td>
<td>GFS: Sea spray, optimization</td>
<td>GFS: Sea spray; optimization, TC-specific tuning</td>
</tr>
<tr>
<td>PBL</td>
<td>**Modified sa-TKE-EDMF: Positive definite tracer advection; TC-Specific tuning</td>
<td>**Modified TKE-EDMF: Positive definite tracer advection; optimization, TC-Specific tuning</td>
</tr>
<tr>
<td>Gravity Wave Drag</td>
<td>Orographic/Convective: On/Off</td>
<td>Orographic/Convective: On/Off</td>
</tr>
<tr>
<td>Land Surface Model</td>
<td>Noah LSM</td>
<td>NOAH MP and VIIRS veg type</td>
</tr>
<tr>
<td>Microphysics</td>
<td>GFDL MP</td>
<td>Thompson MP (requires ~10% more resources)</td>
</tr>
<tr>
<td>Radiation (LW & SW)</td>
<td>RRTMG (30 min)</td>
<td>RRTMG (30 min)</td>
</tr>
</tbody>
</table>

For unification, physics options *(Thompson MP, NOAH MP, uGWPv1)* planned for GFS.v17/GEFS.v13 are also evaluated in **HAFSv0.3 Suite 2 configuration**.
Aerosols: OPAC versus MERRA2

<table>
<thead>
<tr>
<th></th>
<th>OPAC</th>
<th>MERRA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal resolution</td>
<td>5 by 5 degree</td>
<td>0.5 by 0.625 degree</td>
</tr>
<tr>
<td>Vertical levels</td>
<td>5 regimes (One layer/two layers)</td>
<td>72 (Surface to 1 Pa)</td>
</tr>
<tr>
<td>Aerosol types</td>
<td>10 (1 inso, 1 so, 2 ss, 4 mineral, 1 su)</td>
<td>15 (5 du, 5 ss, 2 oc, 2bc, 1su)</td>
</tr>
<tr>
<td>Stratosphere volcano</td>
<td>Background (1.e-4)</td>
<td>Assimilated SS and SU</td>
</tr>
<tr>
<td>Data Collected</td>
<td>Before 1998</td>
<td>2003-</td>
</tr>
</tbody>
</table>

- OPAC has been used in NCEP operational models for more than 20 years.
- MERRA2 is now active in the UFS Prototypes, RRFS and HAFS for computing aerosol direct radiative forcing.
- Development is underway to take into account interaction of aerosols with clouds

![Total aerosol optical depth (0.55 mu)](image)
Microphysics: GFDL MP vs Thompson MP

<table>
<thead>
<tr>
<th></th>
<th>GFDL MP (single moment)</th>
<th>Thompson 2008/2014 (double)</th>
</tr>
</thead>
<tbody>
<tr>
<td>prognostic variables</td>
<td>qv, ql, qi, qs, qr, qg</td>
<td>qv, ql, qi, qs, qr, qg, ni, nr (2008) + nc, nwfa, nifa (aerosol-aware)</td>
</tr>
<tr>
<td>mixed-phase clouds</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>precipitation sedimentation</td>
<td>qi, qr, qs, qg sediment vertically</td>
<td>qi, qr, qs, qg sediment vertically (ql)</td>
</tr>
<tr>
<td>assumed PSD</td>
<td>exponential</td>
<td>generalized gamma</td>
</tr>
</tbody>
</table>

- GFDL MP has been used in operational GFS and GEFS since 2019.
- Significant effort has been put into eliminating computational instability of Thompson MP in both global and regional models. **Subcycling microphysics and semi-Lagrangian sedimentation** (applied to rain and graupel) techniques have been developed and successfully tested and evaluated in these models.
- Thompson MP without aerosol awareness is currently running in RRFS, HAFS Suite-B, and UFS Prototype 8.
The Semi-Lagrangian sedimentation of rain and graupel has been implemented in the Thompson MP scheme to improve its accuracy and **computational efficiency (> 12% reduction)**. It has been extensively tested and incorporated into the most recent UFS prototype configuration.

Impact on 13-km Global Model Precipitation

Impact on 3-km RRFS

reduces the high biases in the 3-h accumulated precipitation rates < 2.5 inches
UFS Microphysics Development -- Challenges

Observed frequency distribution (PDF) of RH relative to ice (RHI) from MOZAIC flight-level obs. (Krämer et al., 2009)

RHI PDF from various models (Credit: Greg Thompson). Supercooled cloud water presents a hazard to aviation!
Integrated hydrometeors (global, tropical:30S-30N)

<table>
<thead>
<tr>
<th>g/m^2</th>
<th>GFSv16 GFDL MP</th>
<th>GFSv16 Thompson MP</th>
<th>IFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud liquid</td>
<td>(77.6, 57)</td>
<td>(54.45,14)</td>
<td>(54.6, 50.13)</td>
</tr>
<tr>
<td>Cloud ice</td>
<td>(35.47, 23.82)</td>
<td>(8.67,12.32)</td>
<td>(20.17,15.14)</td>
</tr>
<tr>
<td>Snow</td>
<td>(17.57,13.75)</td>
<td>(54.3,40.97)</td>
<td>(49.63,43.14)</td>
</tr>
<tr>
<td>Ice + snow</td>
<td>(53.04,37.57)</td>
<td>(62.97,53.29)</td>
<td>(69.8,58.28)</td>
</tr>
<tr>
<td>Ice + snow + cloud liquid</td>
<td>(130.64, 94.57)</td>
<td>(117.42,98.43)</td>
<td>(124.4,108.41)</td>
</tr>
</tbody>
</table>

These differences in hydrometer loadings affect radiative heating and radiative balances.

UFS p8b experiment: OLR varies with RHic for supersaturation

- UL: CERES obs
- UR: RHi=125%
- LR: RHi=115%
- LL: RHi=110%
Further Development of Thompson MP

- Improving cloud cover and radiative balances in global model
- Improving storm structure and precipitation in regional model

- Develop Aerosol-cloud-radiation interactions with a hierarchical approach
 - MERRA2 aerosol climatology, without aerosol chemistry, emission, physics (deposition and scavenging), and transport.
 - Thompson-Eidhammer double-moment scheme, with MERRA2 climatology for initialization and including in model integration aerosol emission, deposition and scavenging, and transport.
 - Thompson-Eidhammer double-moment scheme, including only water friendly and ice friendly aerosols, with emissions included (OAR/GSL).
 - Coupled to aerosols predicted by the online-GOCART aerosol module.
Noah-MP is a land surface model that allows a user to choose multiple options for several physical processes (courtesy of Mike Barlage):

- Canopy radiative transfer with shading geometry
- Separate vegetation canopy
- Dynamic vegetation
- Vegetation canopy resistance
- Multi-layer snowpack
- Snowpack liquid water retention
- Simple groundwater options
- Snow albedo treatment
- New frozen soil scheme
- New snow cover

- NOAH LSM has been used in NCEP operational models since mid 2000’s
- NOAH-MP is now running in the UFS couple model prototypes (for GFS/GEFS/SFS).
- Currently actively tested in RRFS and HAFS.
- Recent updates include calling GFS and MYNN surface layer inside NOAH-MP, updating snow physics, using VIIRS veg type and land/lake masks, and developing land spin-up process etc.
Develop/refine Noah-MP code

A series of mini PT tests have been carried out to test each land surface upgrade to address some land-related biases found in P7 and P8. An option of the thermal roughness length scheme was added to the model. The canopy height dependent scheme was selected to reduce the warm bias of the minimum 2-m T. Snow compaction was adjusted to improve snow forecast.

Surface CAPE [J/kg] Day 1 Mean Mini-prototype Cases

Issue: CAPE too low, especially over central US
Solution: improve surface coupling with Noah-MP, increase latent heat flux

GEFS tests with updated NOAH-MP

Ensemble forecasts made with the latest p8 physics suite (EP3) showed much improved T2m ensemble spread in cold seasons. We are still working towards understanding how the various physics updates contributed to this improvement, in particular the feedback between cloud microphysics and NOAH-MP.
Updated Convection and PBL Schemes

- **Updated sa-SAS cumulus convection, TKE-EDMF PBL and GFS surface layer scheme** to improve CAPE and to reduce cold bias in the tropical troposphere found in GFSv16, and to improve surface temperature forecasts. ([link](#))
- Added a positive definite **TVD** (Total Variance Diminishing) mass-flux scheme to remove negative tracers in the PBL and cumulus convection parameterizations.

- Added a stochastic parameterization of organized tropical convection using **cellular automata** (Bengtsson et al. 2021) to improve MJO.
Challenges of Implementing RRTMgp in the UFS

- RRTMgp is more computationally efficient than RRTMG in offline RTM calculations, but is still two to three times more expensive in the UFS after certain optimization and with halved spectral bands.

- Much colder temperature in the upper atmosphere.

- Larger downward LW and warmer surface temperatures
Radiation: RRTMG vs RRTMGp

- RRTMG was developed at AER ~ 20 years ago. The full radiation spectrum is divided into 16 bands for LW and 14 band for SW.
- RRTMGp is completely rewritten with modern fortran language and has more spectral bands and improved accuracy.

RRTMG has a large warm bias (higher HRs than the reference calculations) in the upper stratosphere / lower mesosphere. RRTMGP has fairly small errors everywhere, some positive and some negative. (Note the different x-axis scales in both the right-hand and left-hand plots.)

Values on left are average HRs for reference LBL calculations and fast codes for 51 RFMIP atmospheres. Code – reference differences are on right. Top two layers are at 0.28 mb and 0.1 mb.
Gravity-Wave Physics

Large-Scale Orographic GWD

Low-level flow blocking

Non-stationary GWD

Small-scale GWD

Turbulent orographic form drag

uGWD.v0 used in GFS.v16:

uGWDv1 tested in UFS Prototype 7:
Kim and Doyle (2005) O-GWD & Block
Yudin et al (2021) N-GWD
Tsiringakis et al. (2017) SS-GWD,
Beljaars et al. (2004) TOFD
Challenges of Implementing uGWD.v1 in the UFS

The NEW OGWD: improves tropospheric wind (verified against RAOBS)

But degraded ACC, and precip (not shown)

new OGWD "old" OGWD

The new N-GWD also made polar night jets too weak (not shown here).
Refine and Develop Unified Gravity Wave Drag

Improvement was made with tuning of large-scale orographic gravity-wave drag and low-level blocking schemes of the Unified Gravity Wave Physics (UGWP) suite.

However, the model still has stability issue over complex terrains with strong surface winds.

The investigation is still ongoing. So far the TOFD (turbulence orographic form drag) parameterization has been found to be likely the cause.
Significant changes in the GFS cumulus convection, vertical turbulent mixing, and surface layer schemes in the GFS P8B physics updates have been made for potential implementation in the GFSv17, which helped to enhance the underestimated CAPE, to reduce the cold biases in tropospheric temperature profiles over the Tropics, and to reduce the nighttime cold and daytime warm 2m temperature biases over forest regions.

In the GFS P8B physics updates, a positive definite TVD (Total Variation Diminishing) mass-flux transport scheme and a method for removing negative tracer mixing ratio values have been also implemented into the PBL and cumulus convection schemes.

Compared to GFSv16 convection schemes, however, the updated cumulus convection schemes tended to reduce the TC intensity in HAFS as well as in GFS, increasing the negative TC intensity biases.

It has been found that the cause for the reduction of TC intensity in the P8B physics update is mainly due to the neglect of certain scale-aware features from the GFSv16 convection scheme.

In the P8C update of the convection schemes, the scale-aware cloud base mass flux has been back to the GFSv16 convection version, which led to a significant improvement in the TC intensity and track forecasts from the P8B in both GFS and HAFS, comparable to GFSv16.

From the 3-km RRFS experiments, in addition, the current TKE-EDMF PBL scheme tends to overgrow the PBL especially during late afternoon, producing unrealistic widespread popcorn-like precipitation.

To reduce the PBL overgrowth, in the P8C update the virtual potential temperature at top of the surface layer rather than that at the model first layer is used as near surface virtual potential temperature in the bulk-Richardson number computation, which helps to largely suppress the unrealistic widespread popcorn-like precipitation.

To further improve hurricane track and intensity forecasts, a parameterization to include environmental wind shear effect in the cumulus convection and PBL schemes is being developed.
Improve Hurricane Track and Intensity for both GFS and HAFS

Jongil Han, Wei Li, Chunxi Zhang, Jiayi Peng (EMC)

13-km GFS for hurricane Florence

(IC: 00Z 10/06/2018)

Best-Track (black), GFS V16 (purple): GFSv16 run, GFS P8D01 (blue): GFS run with the latest P8 physics update, GFS P8DWUSH & GFSP8DSH*: Same as GFS P8D01 but with wind shear effect in PBL & convection. Overall, including wind shear effect enhances the hurricane intensity by reducing the momentum mixing.

3-km HAFS for hurricane Ida:

2021082706 - 2021082806

SASO (green): HAFS with GFSv16 convection
H3BA (blue): HAFS with GFS P8B physics update
EXP5 (red): HAFS with GFS P8C convection and PBL physics update
Develop, test and evaluate each new, or updated, physics scheme by individual developers.

- Run **atmos-only experiments** using either GFS.v16 or the latest UFS prototype as the control.
- For most of the time, experiments are run at both the C384L127 and C768L127 resolutions, and for both winter and summer seasons.
- Verification made against GFS.v16 analyses, satellite retrievals, surface and rawinsonde observations.

No surprises!

Decision to move each scheme to the UFS coupled model prototypes are made based on:

- Maintain GFS.v16 headline scores, including but not limited to 500-hPa ACC, CONUS precip ETS and bias scores, T2m, surface Winds, tropical winds etc.
- check almost all forecast variables; causes for large or unexpected differences from the control experiment must be explained and understood.
- Check **computational stability, cost efficiency, restart reproducibility**, compliance of UFS code standard; pass Regression Tests.

UFS Prototypes: ... p6, P7a, 7b, 7c, p7.2, p8a, p8b, p8c

based on coupled model evaluation and community feedback, certain scheme is send back to developers for further update and evaluation.
Physics Development with the **Community**
Beyond GFS/GEFS/RRFS/HAFS Prototypes and 2022

- Optimize the physics schemes included in the UFS Prototypes for GFS.v17 and GEFS.v13 to reduce model biases and improve forecast skills.
- Finalize RRFS.v1 and HAFS.v1 physics configurations and improve forecast skills.
- Update and test online-CMAQ (~13-km NA Domain) physics packages.
- Update PBL and surface-layer schemes to improve PBL inversion and surface weather sensitive elements.
- Prognostic aerosols and their interactions with microphysics and radiation.
- Unification of sa-SAS and GF convection schemes. Improving tropical waves and mid-latitude CAPE.
- Optimize NOAH-MP to reduce forecast biases. Develop land as a component model.
- Include lake models (e.g. FLAKE, FVCOM etc) in the UFS.
- Further test and evaluate the unified gravity-wave physics package (uGWD.v1).
- Further test and evaluate RRTMGp. Adopt advanced cloud and hydrometer overlap schemes. Include non-LTE LW radiation and other minor solar UV bands.
- Improve representation of deep convection at grey-zone scales(<10km), including development of a prognostic closure.
- Improve consistency between clouds, radiation and microphysics through the development of a prognostic cloud fraction.
- Continued process level evaluation of new advanced physics processes descriptions in GFSv17, including tropical variability, microphysics/sea ice coupling over the Arctic regions, surface layer processes, etc.
Thank You

https://www.weather.gov/careers/physical-science
From UFS Prototype 6 (GFSv16 physics suite) to the final coupled model Prototype 8 the following physics updates have been made by the UFSR2O community.

- Introduced a **two-moment cloud microphysics** scheme **(GFDL MP --> Thompson MP)**
 - Improved the cloud radiation interaction capabilities
 - Introduced Semi-Lagrangian Sedimentation for improved stability and cost

- Introduced a **new land model** **(NOAH LSM --> NOAH-MP)**

- Included a **new more accurate radiation scheme** for further evaluation **(RRTMG -> RRTMGP)**

- Introduced **new small-scale gravity wave** and **turbulent form drag** parameterizations

- Improved orographic gravity wave drag and mountain blocking

- Introduced a **new parameterization for convective organization**, and **stochastic convective initiation**

- Improved **cumulus convection** schemes and **boundary layer** schemes to address systematic biases

- Introduced **new stochastic physics** in the ocean, land-surface and the atmosphere

- Introduced a **new positive definite tracer advection (TVD)** scheme in convection and PBL

- Improved the **coupling of the land model and surface layer** schemes.

- Introduced **new land/ocean/lake masks, new ice climatology, and surface composites over the fractional grid**

- Introduced new capability for **coupling between aerosols and physics** **(UFSR2O atmospheric composition team/EMC)**