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Motivation

● Satellite radiance assimilation requires bias correction

● Limited area models are often unable to perform bias estimation, and thus adopt 
bias correction parameters from an externally trained model

● Satellite radiance bias specification is strongly model dependent, as bias 
correction methods cannot easily separate model and observation biases

● Our research: test a fully-cycling clear-sky radiance bias correction method for 
Hurricane Analysis and Forecast System (HAFS) model



HAFS/GSI Data Assimilation

● FV3-SAR 

● 6 km horizontal grid spacing 

● 81 vertical levels, model top of 2 hpa

● GFSv16 Input Data, boundary conditions

● 3DEnVar every 6 hours; 80 ens members borrowed 
from GDAS

● Community Radiative Transfer Model (CRTM; Liu and 
Weng 2006)

● Tested over 5-week period during peak 2020 TC season



GSI Clear-sky VarBC

● Bias correction applied to the measurement operator  h(x)

● For “online” experiment, weights (βk) are estimated each analysis via variational 
framework (VarBC)

● For control experiment, these weights are adopted from external model (GDAS)
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•  Online bias correction approach leads to improvements in TC track & intensity forecasting



•  Improvement strengthens for storms with aircraft reconnaissance flight data
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● Bias correction schemes like VarBC correct to a model background

● With zero model error/bias, observation bias correction would be trivial

● When undiagnosed model bias is present, bias correction schemes tend to 
experience “bias reinforcement” (Dee 2005)

● By correcting model bias independently of obs bias correction, we can 
mitigate model bias reinforcement

● Strategy: first correct model bias with analysis increment statistics, then 
correct obs with innovation statistics

Current Research



● Simulates scalar quantity at one level and 
one latitude (Lorenz 2005)

● Model III simulates smooth planetary 
waves w/ small-scale activity superposed

● X describes large-scale, Y describes 
small-scale

● Replicates physical processes such as 
advection, damping, constant forcings, etc.

Lorenz 2005 Model III



● 500 ens member EnKF (Whitaker and Hamill 2001) 

● Localization/inflation tuned to achieve optimal spread

Experiments are designed to simulate challenges in NWP, such as:

● Sparse and/or biased obs

● Land/ocean disparity

● “Anchor” obs

● Model bias

● Representativeness error

DA & Sources of Bias

(a)

(b)

Panels (a) and (b) display results from 
experiments with high and low model bias, 
respectively



Bias Correction (BC) Techniques 

● Analysis increment and innovation statistics are collected over 

equivalent training period

● Statistics time-averaged and smoothed via Savitzky–Golay filter

We examine 3 additive bias correction techniques:

● Model BC: model-space prior x(i) + analysis increments (A-B) 

● Obs BC: obs-space prior h(x) + innovations (O-B)

● Obs BC: obs-space prior h(x) + residuals (O-A)



Bias Correction (BC) Techniques (cont.)

In addition, we performed experiments in which we 

correct model bias and obs bias independently:

● First, we use a biased model with unbiased obs 

assimilated

● Second, we bias correct the model and introduce 

biased obs

● Third, we maintain the bias corrected model and 

bias correct the obs using innovation statistics 

from 2nd experiment
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Summary & UFS Applications
● Our candidate technique has demonstrated success in improving forecast 

accuracy over benchmark experiments

● We continue to refine the methodology within an idealized framework, aiming 
to replicate known challenges for assimilating satellite radiances

● This method is scalable to NWP systems, relying only on time-averaged 
analysis increment and innovation statistics

● Next steps: implementation of candidate technique in HAFS DA configuration, 
in combination with other novel DA methodologies developed at UMD 
(Poterjoy and Kurosawa 2022; Kurosawa and Poterjoy 2023; Knisely and 
Poterjoy 2023)
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VarBC Cost-function

Zhu et al. 2014


