The origin and evolution of the Monsoon onset vortex and its subseasonal impacts: Integrating Theory and predictability studies using the UFS

Shreyas Dhavale [\(sdhavale@ucar.edu](mailto:sdhavale@ucar.edu) / [sdhaval2@ncsu.edu\)](mailto:sdhaval2@ncsu.edu)

(WINGS Fellow and PhD Candidate at the Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, working with Dr. Anantha Aiyyer)

1

An overview of the Indian Summer Monsoon

- Extends from June to September
- **Mascarene High**
- Somali Jet (low level jet at 850 hPa)

- Tropical easterly jet (TEJ)
- **Tibetan High**

Fig. 4 c. Streamlines and isotachs 200 mbs, July 25, 1955. Jet axis marked heavy and wind maxima shaded. Image from Koteswaram, P. (1958)

Background

- The Monsoon is characterized by high vertical wind shear: low-level westerlies and upperlevel easterlies
- Tropical cyclogenesis is rare during the core monsoon period of July-August
- However, during the Monsoon onset phase (late May-early June), a vortex forms in the Arabian Sea in ~60% of the years
- This vortex is termed as the Monsoon Onset Vortex (MOV)
- Recent example: Cyclone Biparjoy in the Arabian Sea, June 2023

Cyclone Biparjoy - Infrared image from INSAT 3D during June 10, 2023

(Image credits: India Meteorological Department)

MOV during monsoon onset No MOV during monsoon onset

Why study the MOV?

1. Affects the advance of the Monsoon

- Helps set in the Monsoon over southern India (e.g., Krishnamurti et al., 1981)
- The MOV track/intensity can possibly delay the monsoon progression over the west coast of India and in the interior peninsula
- **2. Considerable Socio-Economic impacts**
- MOVs often intensify into TCs (\sim 78%), coastal hazards for densely populated coastline
- Past MOVs have caused damages worth \$4 billion (Evan and Camargo, 2011)
- Agricultural and hydrological impacts through modulation of subseasonal monsoon rainfall

Previous Literature and Knowledge gaps

- Idealized modeling experiments single-layer barotropic model to study barotropic instability of Somali Jet (Krishnamurti et al., 1981)
- Dry barotropic-baroclinic instability of basic state idealized models with 2 or more atmospheric layers (e.g., Mak and Kao, 1982; Krishnakumar et al., 1993)
- Some synoptic studies on the environment of the MOV Arabian Sea mini-warm pool, Somali jet and east-west shear zone (Rao and Shivakumar, 1999, Deepa et. al., 2007)

- ⮚ No comprehensive study focusing on the **Physical Mechanisms of MOV formation** and its impact on **subseasonal monsoon rainfall**
- **Predictability** Need to evaluate the performance of operational models such as the UFS for the MOV **UIFCW**

Collaboration Powered by **EPIC**

Preliminary Results

1. Identification of past MOVs

Combination of reports from the Joint Typhoon Warning Center (JTWC) and India Meteorological Department (IMD) – total 23 MOVs from 1982-2021

2. Role of the Madden-Julian Oscillation (MJO)

- MJO is the leading source of predictability over the Indian Ocean
- MOV's response to the MJO is non-linear \Box convectively active MJO is neither a necessary nor a sufficient condition for MOV formation, but convectively suppressed MJO inhibits MOV more robustly (Dhavale and Aiyyer, 2023 – manuscript under review)

Preliminary Results

3. Flavors of the MOV

- Presently working on analyzing MOV structure using high-resolution reanalysis datasets and satellite observations
- **Goal:** To develop a synoptic model of the MOV

4. Model Simulations: WRF

- Surface enthalpy fluxes essential for the MOV to sustain and intensify into a tropical cyclone
- MOV simulations in WRF are sensitive to convective parameterization choices.

WRF Simulations: Importance of surface fluxes

Figure: Sea Level pressure (contours) and total accumulated precipitation (color) as observed in the WRF runs with and without the surface enthalpy fluxes for the 2015 MOV. Figure: 850 hPa winds (vectors) and relative vorticity (color). 9
observed in the WRF runs with and without the surface enthalpy fluxe

Proposed Work with the UFS

Working with Dr. Cristiana Stan and my advisor Dr. Anantha Aiyyer

Validating the UFS performance

- Study the forecast skill of the UFS prototypes and compare them with reanalysis datasets/observations
- E.g., Dynamic fields (wind, vorticity) and thermodynamic fields (temperature, SST), cloud properties, and rainfall
- Identify the model bias
- **Potential Simulations using the UFS SRW/MRW**
	- Check the predictability of the MOV
	- Study mechanisms governing its formation and intensification into a tropical cyclone

Impacts on Global Science, Meteorology and the Community

- **Help in improving the UFS** subseasonal predictions of tropical monsoon regions
- A step towards **achieving the objectives of the UFS and NOAA** to help improve skill and enhance the value of subseasonal weather forecasts
- Most MOVs intensify into tropical cyclones Understand a **potential pathway to tropical cyclogenesis.**
- Potentially *improve forecast skill for other regions of the world* through teleconnections (tropical convection affects global weather through teleconnections, e.g., Beverly et al., 2021)
- Improved subseasonal weather predictions a great help to **food and water security in South Asian countries minimizing socio-economic impacts** and benefitting a large section of humanity

Acknowledgements

- I would like to thank CPAESS, UCAR, and NOAA WPO for this incredible opportunity.
- I would like to thank my advisor Dr. Anantha Aiyyer, for his constant support and valuable guidance.
- My PhD advisory committee (Dr. Gary Lackmann, Dr. Walter Robinson and Dr. Sarah Larson) at North Carolina State University, for their valuable feedback and guidance.
- My mentor for the WINGS Fellowship, Dr. Cristiana Stan (George Mason University) for her guidance on the UFS.
- Dr. Cindy Bruyère and Kate Rodd from CPAESS for their immense help over the last 4 months in the onboarding process of the first batch of WINGS Fellows.

References

- 1. Beverley, J. D., Woolnough, S. J., Baker, L. H., Johnson, S. J., Weisheimer, A., & O'Reilly, C. H. (2021). Dynamical mechanisms linking Indian monsoon precipitation and the circumglobal teleconnection. Climate Dynamics, 57(9), 2615-2636.
- 2. Deepa, R., Seetaramayya, P., Nagar, S. G., and Gnanaseelan, C. (2007). On the plausible reasons for the formation of onset vortex in the presence of Arabian Sea mini warm pool. Current Science, pages 794–800.
- 3. Evan AT, Camargo SJ. 2011. A climatology of Arabian Sea cyclonic storms. Journal of Climate, 24(1): 140–158. [https://doi.org/10.1175/2010JCLI3611.1.](https://doi.org/10.1175/2010JCLI3611.1)
- 4. Koteswaram, P. (1958). The easterly jet stream in the tropics. Tellus, 10(1), 43-57.
- 5. Krishnakumar, V., V. S. Kasture, and N. R. Keshavamurty, 1993: Linear and Non-linear Studies of the Summer Monsoon Onset Vortex. Journal of the Meteorological Society of Japan, 71 (1), 1–20.
- 6. Krishnamurti, T. N., P. Ardanuy, Y. Ramanathan, and R. Pasch, 1981: On the Onset Vortex of the Summer Monsoon. Monthly Weather Review, 109 (2), 344.
- 7. Mak, M., & KAO, C. Y. J. (1982). An instability study of the onset□vortex of the southwest monsoon, 1979. Tellus, 34(4), 358-368.
- 8. Rao, R. R. and Sivakumar, R. (1999). On the possible mechanisms of the evolution of a mini-warm pool during the pre-summer monsoon season and the genesis of onset vortex in the South-Eastern Arabian Sea. Quarterly Journal of the Royal Meteorological Society, 125(555):787–809

Thank You!

