EPIC Infrastructure update

Collaborative effort between - Community Collaborators slide attached

Special Acknowledgments: Dr. Mark Potts Dr. Stylianos Flampouris, Dr. Jong Kim, Kris Booker

Agenda

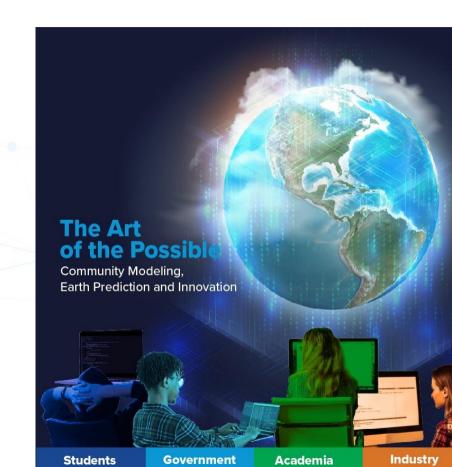
- Partners/EPIC Progress
- We hear you, We want to hear more
- Community Infrastructure
 - a. Repeatable to SRW, RRFS, LandDA, HAFS, and future applications
- CI/CD
 - a. Complete for SRW
 - b. Repeatable for LandDA, HAFS, and future applications
- Tutorials and training
- Closing
- Need for Testing
- Closing

Partners

Community Collaborators/Partners

Acknowledgement

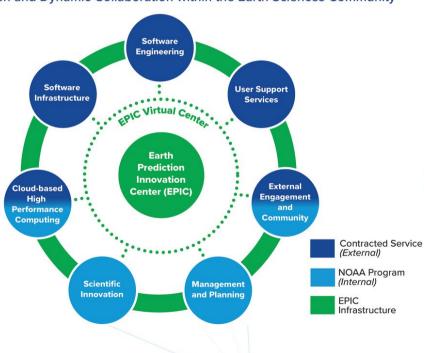
- NOAA OAR: WPO, GSL, PSL, NSSL, CSL, AOML, GFDL
- NOAA Open Data Dissemination (NODD) Program
- NWS: EMC, OSTI
- DTC
- UCAR: CGD, JCSDA
- Academia: George Mason University, Oklahoma University, University of Michigan
- CSPs: AWS, Azure, and Google Cloud
- Cooperative Institutes: CIRES, CIMSS



EPIC Progress

We hear you, we want to hear more!

- We need fewer users and more contributors.
- How do I replicate EPIC event infrastructure?
- How can we track contributors versus users across applications?
- How can we utilize repeatable processes (CI/CD) to test applications have passed all gates?
- Peer reviews need to be faster.
- More tutorials:
 - Contributing to UFS GitHub
 - GitHub Discussion and how to get user support
 - Azure AZ-HOP
- Don't wait for a survey/meeting email: support.epic@noaa.gov


Simplifying NOAA's Operational Forecast Suite

Transitioning 21 of NOAA's Operational Forecast Systems into Eight Applications

EPIC Architectural Plans

Building Open and Dynamic Collaboration within the Earth Sciences Community

Continued Plans:

- CI/CD across more applications
- Transparent Gates
- Fail or Succeed Quickly
- Enhanced testing frameworks
- Advanced User Support
- Configuration Management
- Cloud configuration scripts
- Community Tools
- Unified Workflow
- Community Events

Community Infrastructure

EPIC Cloud Architecture

AWS RTX Sandbox	An AWS account that sits outside of the NOAA firewall to allow for non-CAC users.
AWS ACIO Sandbox	An AWS account that sits outside of the NOAA firewall to allow for non-CAC users. Login.gov access.
Azure RTX and ACIO Sandbox	An Azure account that sits outside of the NOAA firewall to allow for non-CAC users.
GCP ACIO Sandbox	A GCP account that sits outside of the NOAA firewall to allow for non-CAC users.
	An AWS account that sits inside the NOAA firewall containing
AWS ACIO Dev	our application code that is in active development under ACIO.
AWS ACIO Prod	An AWS account that sits inside the NOAA firewall containing our application code that is live in the production account under ACIO.
	A third-party HPC provider inside of the NOAA firewall that provides us virtual machines to test UFS applications on all 3
Parallel Works	cloud service providers.

New Tutorial - Infrastructure as Code

- Common Infrastructure using Packer able to deploy on any CSP
- https://github.com/NOAA-EPIC/packer-srwcluster
 - 12 lines of code to build out and run SRW
 - Tutorials Earth Prediction Innovation Center (noaa.gov)

Can be any of the CSP's

- Video 3: Running any application
 - Starting with SRW v2.1
 - Next: LandDA

CI/CD Pipeline

Pipeline Gates

- Average Build time
- Average time per gate
- Average build time per platform
- Code Coverage
- Forecast Skill

Checkout Source Code	Pull source code from GitHub and stage the data for analysis before deploying code.
Unit Testing	Run available unit tests for projects and ensure that the tests run as expected Collect code coverage metrics for the available baselines.
Lint (Flake 8)	Perform static code analysis that enforces style consistencies across progran languages.
Dependency Check	Scan third-party libraries and modules for current vulnerabilities.
Build the Cloud Stack	Terraform/Cloudformation scripts will create a repeatable process for deployin applications.
Lint Cloud Stack	Examine the cloud stack template and return various suggestions.
Nag Cloud Stack	Pinpoint security vulnerabilities in cloud stack templates.
Scan Secrets	Scan for any improper use of security passwords or credentials.
Static Code Analysis	Scan code in all programming languages using SonarQube to determine curre vulnerabilities, maintenance issues, and defects. Note: SonarQube also has to ability to utilize architectural metrics such as cyclomatic complexity and maintainability metrics. Cyclomatic complexity as the example infers is a value tells the ability that a new engineer will be able to come in and maintain the ball the number is high, then you have an application that is tough to upkeep, so tracking this number over time will make sure that your application is easy to maintain, which in turn reduces technical debt costs.
Package/Pull Artifacts/Deploy	This gate sequence will package up the artifacts and the application and depleapplication as needed after completing all quality gate checks.
Run Regression Tests	Run a list of regression tests to test the overall end-to-end functionality.

CI/CD Pipeline

• Master Pipeline:

Stage View

	Build and Test	Matrix - SRW_PLATFORM = 'cheyenne', SRW_COMPILER = 'gnu'	Matrix - SRW_PLATFORM = 'cheyenne', SRW_COMPILER = 'intel'	= 'gaea',	Matrix - SRW_PLATFORM = 'hera', SRW_COMPILER = 'intel'	Matrix - SRW_PLATFORM = 'jet', SRW_COMPILER = 'intel'	Matrix - SRW_PLATFORM = 'orion', SRW_COMPILER = 'intel'	Initialize	Initialize	Initialize	Initialize	Initialize	Initialize	Build	Build	Build	Build	Build	Build	Test	Test	Test	Test	Test	Test
Average stage times: (Average <u>full</u> run time: ~26min 23s)	15	25	2s	2s	2s	2s	25	3min 6s	0ms	Oms	Oms	Oms	0ms	12min 38s	Oms	Oms	0ms	Oms	Oms	15	Oms	Oms	0ms	0ms	Oms
56p 25 1 commit	1s	25	2s	25	2s	2s	25	1min 47s	1min 36s	5min 9s	4min 19s	2min 47s	3min 2s	15min 35s	9min 14s	23min 26s	8min 57s	8min 18s	10min 20s	1s	1s	1s	1s	1s	2s

Read Yaml	Source	List Files	OWASP Dependency Check	Python Lint	Python Unit Tests	Build Cfn Template	Cfn Lint	Cfn Nag	Secrets Scanning	SonarQube Scan	Build UI	Package Lambdas	Pull Layers from Artifactory	wdaimpact- spire-app Stack to wdaimpact- spire- devtest	Cleaning Up
79ms	41s	434ms	32s	4s	55s	1s	3s	3s	7s	1min 39s	0ms	0ms	0ms	0ms	75ms
123ms	39s (paused for 9s)	562ms	37s	5s	55s	1s	4s	3s	7s	1min 34s					73ms

EPIC Dashboard - Selenium

EPIC Dashboard - GitHub

Discussions

Includes: ufs-srweather-app, ufs-weather-model, UPP, land-DA_workflow, and NOAA-EPIC/land-offline_workflow

UFS Community Discussions

Repository	GitHub Id	Date Created	Initial Answ	Github URL	Last Comment	Author	
UPP	713	2023-05-24T13:36:22Z	Yes	https://github.com/NOAA-EMC/UPP/discussions/713/	2023-05-24T16:54:03Z	SiriusDanica666	î
UPP	712	2023-05-24T13:24:23Z	Yes	https://github.com/NOAA-EMC/UPP/discussions/712/	2023-05-24T16:47:23Z	SiriusDanica666	ı
ufs-weather-model	1709	2023-04-13T13:07:35Z	Yes	https://github.com/ufs-community/ufs-weather-model/discussions/1709/	2023-04-13T13:45:37Z	ericaligo-NOAA	ı
ufs-weather-model	1708	2023-04-12T20:28:22Z	Yes	https://github.com/ufs-community/ufs-weather-model/discussions/1708/	2023-04-12T21:12:51Z	benjamin-cash	
ufs-weather-model	1671	2023-03-22T05:26:25Z	Yes	https://github.com/ufs-community/ufs-weather-model/discussions/1671/	2023-04-03T15:43:31Z	XiaSun-Atmos	
ufs-weather-model	1666	2023-03-20T14:57:24Z	Yes	https://github.com/ufs-community/ufs-weather-model/discussions/1666/	2023-05-18T13:42:20Z	jiandewang	
ufs-weather-model	1623	2023-02-23T20:50:54Z	Yes	https://github.com/ufs-community/ufs-weather-model/discussions/1623/	2023-02-27T16:55:31Z	mjhossen	
ufs-weather-model	1611	2023-02-13T21:13:26Z	No	https://github.com/ufs-community/ufs-weather-model/discussions/1611/		ShawnCebulaNOAA	
ufs-weather-model	1576	2023-01-20T19:36:54Z	Yes	https://github.com/ufs-community/ufs-weather-model/discussions/1576/	2023-01-27T02:19:41Z	aschuh	
ufs-weather-model	1534	2022-12-12T23:31:56Z	Yes	https://github.com/ufs-community/ufs-weather-model/discussions/1534/	2022-12-13T16:36:47Z	rickgrubin	+
						Rows per page: 100 ▼ 1–32 of 32 < >	

Includes: ufs-srweather-app, ufs-weather-model, UPP, land-DA_workflow, and NOAA-EPIC/land-offline_workflow

Repository GitHub Id Date Created Initial Answ... Github URL

EPIC Dashboard - GitHub Traffic

UFS UTILS GitHub repository

Data from: 2023-05-21 to 2023-06-11

https://noaa-epic.s3.amazonaws.com/index.html

Name	Email	Commits
GeorgeGayno-NOAA	52789452+GeorgeGayno-NOAA@users.noreply.github.com	1

ufs-weather-model

ufs-weather-model GitHub repository

Data from: 2023-05-21 to 2023-06-11

Name	Email	Commits						
Sadegh Sadeghi Tabas	31417680+SadeghTabas-NOAA@users.noreply.github.com	1						
jiandewang	jiande.wang@noaa.gov	1						L
Gillian Petro	96886803+gspetro-NOAA@users.noreply.github.com	1						L
Dustin Swales	dustin.swales@noaa.gov	1						
dkokron	dkokron@users.noreply.github.com	1						•
				Rows per page: 10	0 🕶	1–6 of 6	< :	,

EPIC

EPIC Dashboard - Pipeline

EPIC CI Build Status - ufs-srweather-app

Last updated: Sun Mar 12 22:42:01 PDT 2023

ufs-srweather-app/job/pipeline/view/change-requests												
timestamp	PR-build	inProgress	duration (min)	result	WE2E-tests	S3-artifacts						
2023-03-10 15:29:36	ufs-srweather-app/job/pipeline/job/PR-667/1/	true				~						
2023-03-10 17:13:46	ufs-srweather-app/job/pipeline/job/ <u>PR-663</u> /1/	false	309.8	FAILURE	cheyenne-intel gaea-intel jet-intel orion-intel	srw_build-cheyenne-gnu.log						
2023-03-08 17:06:26	ufs-srweather-app/job/pipeline/job/PR-657/3/	false	518.3	FAILURE		srw_build-cheyenne-gnu.log						
2023-03-08 17:00:05	ufs-srweather-app/job/pipeline/job/PR-657/2/	false	1	FAILURE		~						
2023-03-08 16:53:00	ufs-srweather-app/job/pipeline/job/PR-657/1/	false	0	FAILURE		~						
2023-03-10 15:08:26	ufs-srweather-app/job/pipeline/job/ <u>PR-656</u> /1/	false	274.9	SUCCESS	cheyenne-gnu cheyenne-intel gaea-intel jet-intel orion-intel	srw_build-cheyenne-gnu.log						
2023-03-08 19:16:35	ufs-srweather-app/job/pipeline/job/PR-650/1/	false	438.7	FAILURE	cheyenne-gnu cheyenne-intel gaea-intel jet-intel	srw_build-cheyenne-gnu.log						
2023-03-09 01:43:47	ufs-srweather-app/job/pipeline/job/PR-637/2/	false	117	FAILURE	cheyenne-gnu cheyenne-intel gaea-intel jet-intel	srw_build-cheyenne-gnu.log						
2023-03-08 16:29:15	ufs-srweather-app/job/pipeline/job/PR-637/1/	false	554.5	FAILURE		srw_build-cheyenne-gnu.log						
2023-03-06 16:44:27	ufs-srweather-app/job/pipeline/job/ <u>PR-632</u> /1/	false	167.3	FAILURE	cheyenne-gnu cheyenne-intel gaea-intel jet-intel	srw_build-cheyenne-gnu.log						
2023-02-24 18:37:40	ufs-srweather-app/job/pipeline/job/ <u>PR-628</u> /1/	false	218.5	SUCCESS	cheyenne-gnu cheyenne-intel gaea-intel jet-intel orion-intel	srw_build-cheyenne-gnu.log						
2023-03-03 18:51:37	ufs-srweather-app/job/pipeline/job/PR-627/1/	false	432.1	FAILURE	cheyenne-gnu cheyenne-intel gaea-intel jet-intel	srw_build-cheyenne-gnu.log						
2023-02-23 16:50:45	ufs-srweather-app/job/pipeline/job/PR-626/1/	false	140.6	ABORTED	cheyenne-gnu cheyenne-intel gaea-intel jet-intel	srw_build-cheyenne-gnu.log						

Implemented Process

UFS-SRW Application - Example

- Infrastructure Update the CICD pipeline of the SRW to include the driver for forecast verification
- Scientific Hypothesis Evaluate the impact on severe winter weather with the relevant UFS case to validate the hypothesis, i.e., Indianapolis case
- Objective Verification Calculate skill score index based on weighted average of a combination of metrics (RMSE), variables (wind speed, dew point temperature, temperature, and pressure at the lowest level in the atmosphere), and lead time
- Output Every source code update has a performance indicator; i.e., aiming for higher than 1.0.

Next Steps

- Expansion of the infrastructure to all the UFS
 repositories, already in the Land DA
- Well-established problems with focused research and development
- Significant increase to HPC resources dedicated to the testing, i.e., currently the SRW testing is not triggered due to the lack of resources
- Support for incremental change in development mindset, there are already great examples

A UFS Collaboration Powered by EPIC

Tutorials and Training

Community Engagement Activities

Community Portal and Resources

- Regular Updates, FAQs
- Detailed descriptions of products and Services
- Feedback Pages / Incorporating Feedback

Social Media Campaigns

- Twitter
- Facebook
- Instagram

Webinars and Workshops

- Host webinars and workshops for EPIC community
- Topics related to EPIC, model dev and data analysis

Community Events

- Application Training
- CodeFest
- UIFCW

Publications and Newsletters

- Publish latest developments
- Articles, impacts and contributions
- Guides and technical documents for users

Outreach and Marketing

- Increase awareness of EPIC and community
- Collaborate with external partners and stakeholders
- Targeted messaging and communications strategies

der fagent

JFS Land Data Assimilation (DA) System v1.0.0

Release date: 3/6/202

The Earth Prediction Innovation Center (I

Training April 2023: Running v2.1.0

UIFCW 2023

EPIC Success at AGU

A UFS Collaboration Powered by EPIC

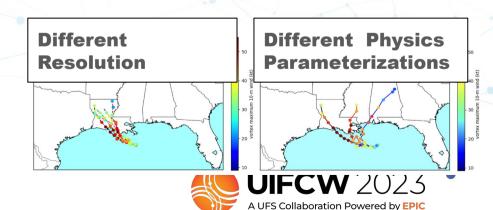
Upcoming Events, Projects & Promotions

- Quarterly CodeFests & Application Trainings
 - Short-Range Weather CodeFest 2023: Unit Testing Framework for UFS April 3-7, 2023
 - Short-Range Weather Application Training 2023: Running V2.1 Containers in AWS April 7, 2023
 - EPIC CodeFest June 2023: Unit Testing Framework for the UFS June 19-23, 2023
 - EPIC Application Training June 2023: Land Data Assimilation (DA) System June 23, 2023
- Plan/Host UIFCW, Summer 2023
- Quarterly Video Tutorials
- UPP webpage on ECP (support transitioned from DTC to EPIC)
- Explore combining EPIC-UFS Communications Strategy
- Conferences (AGU & AMS)
- Launch an EPIC-UFS Newsletter
- Develop an enhanced metrics dashboard for the ECP
- Identify potential areas for improvement and engagement, discover new ways to incentivize external

A UFS Collaboration Powered by EPIC

participation

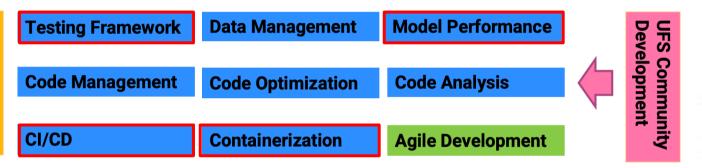
Need for testing and governance



Testing Framework

Objective: To quantify the impact of any code update, in terms of forecast accuracy and computational performance.

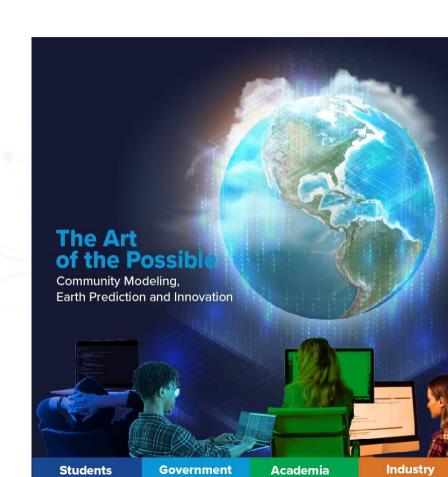
- Homogenize testing infrastructure
- Optimized testing (Reduction of cost)
- Simplification of Code Management
- User-friendly
- Multi-level testing



Infrastructure as an Innovation's Catalyst

Work in Progress by EPIC contract with the UFS Community

Component Catalysts



UFS Performance Improvement Creation of a prosperous environment for rapid innovation!

Closing

- We value continuous feedback
- Our Advanced User Support Team is prepared to assist as needed with your technical questions.
- Await your transparent tools
 - Community Dashboard
 - Infrastructure as code
 - CI/CD Pipeline results are public for all applications
- More tutorials:
 - Contributing to UFS GitHub
 - GitHub Discussion and how to get user support
 - Azure AZ-HOP
- Don't wait for a survey/meeting email:

