Representation Matters: Insights, Strategies, and Perspectives from the Inaugural UFS/EPIC Student Ambassador

Alekya Srinivasan, First Student Ambassador for the Unified Forecast System

Mentors: Jennifer Vogt, Krishna Kumar, Maoyi Huang, Neil Jacobs

Acknowledgements: Aaron Jones, Laura DeHaan, Gina Eosco, Hendrik Tolman, Keven Blackman, and Kristopher Booker

Speaker Background Information

- 2023 William M. Lapenta Intern
 - First Student Ambassador for the Unified Forecast System (UFS)
- Undergraduate student at Penn State University
- Pursuing a B.S. in Meteorology & Atmospheric Science
- Very excited to share summer research and findings with UIFCW 2023!
- Continuing Bill Lapenta's legacy

What is the Role of the UFS/EPIC Student Ambassador?

- Advocating for community engagement & technological advancements for academia
- Determining/evaluating usability of UFS tutorials in academic environments
- Utilizing outreach and technology to support/promote community collaboration across the Weather Enterprise
- Providing an undergraduate student perspective on UFS accessibility and stakeholder engagement

Earth Prediction Innovation Center (EPIC) - Building Blocks

Building Open and Dynamic Collaboration within the Earth Sciences Community

10.1175/BAMS-D-21-0061.1

Focus Points:

- (1) Successfully providing user support
- (2) Community outreach
- (3) Supporting innovative research
- (4) Adaptable software and technological resources
- (5) Maintaining a diverse user database

The Unified Forecast System

Simplifying NOAA's Operational Forecast Suite

Transitioning 21 of NOAA's Operational Forecast Systems into Eight Applications

21 Systems in NOAA's Forecast Suite

Global Weather, Waves & Global Analysis - GFS/ GDAS Global Weather and Wave Ensembles, Aerosols - GEFS Short-Range Regional Ensembles - SREF Global Ocean & Sea-Ice - RTOFS Global Ocean Analysis - GODAS Seasonal Climate - CDAS/ CFS **Regional Hurricane 1 - HWRF** Regional Hurricane 2 - HMON Regional HiRes CAM 1 - HiRes Window NOAA's weather to Regional HiRes CAM 2 - NAM nests/ Fire Wx climate prediction Regional HiRes CAM 3 - RAPv5/ HRRR apability developed over the last **Regional HiRes CAM Ensemble - HREF** two decades Regional Mesoscale Weather - NAM **Regional Air Quality - AQM** Regional Surface Weather Analysis - RTMA/ URMA Atmospheric Transport & Dispersion - HySPLIT Coastal & Regional Waves - NWPS

I & Regional Waves - N

- Great Lakes GLWU
- Regional Hydrology NWM 📕
- Space Weather 1 WAM/IPE
- Space Weather 2 ENLIL

- Community-based Earth modeling system
- Encourages collaboration to accelerate R2O journey
- Public and private code repositories located in GitHub

Designing Innovative Solutions

Community Engagement

Creation of a UFS Student Engagement Plan in Phases

Referencing information from UIFCW Undergraduate student perspective on programming and NWP 2022 Report Phase 1 Personal recommendations for Brief overview of meteorological accreditation standards (GS-1340, AMS, providing research support to enhance stakeholder engagement NWA, WMO) Perform outreach to renowned Continuing to reference research performed Atmospheric Science/Computer in UIFCW 2022 Report Phase 2 Science university programs to gauge Training recommendations professors' perspectives on UFS Inquiring student outlook when entering a community workshop like Perform outreach geared towards Phase 3 **UIFCW** students attending UIFCW 2023 Importance of collaboration and user Analyzing academic perspectives and support interest levels regarding UFS **UIFCW** 2023

A UFS Collaboration Powered by EPIC

Community Outreach

UFS University Outreach Project and Results

General Questions Asked

- (1) How has your institution already implemented programming/NWP into curriculums?
- (2) What, if any, are some of your software requirements? Are there any obstacles that you have encountered/are encountering?
- (3) How can we help? What, if any, support do you have for the software you are currently using?
- (4) Would you be interested in participating in a "UFS Roadshow" (in-person demonstrations) and/or receiving online live tutorials?

University Feedback

- Interest in live UFS demonstrations opens a doorway to greater stakeholder engagement
- Mentions of both undergraduate and graduate programs having programming courses available
- Only some universities have NWP courses, some are optional electives
- Python commonly used programming language
- Closing the gap between academic research and innovative technology/software
 - One of the main issues EPIC and the UFS community face in the eyes of academia

UIFCW Student Outreach Project and Results

(In Progress)

General Questions Asked

- (1) What, if any, is your experience with the UFS?
- (2) Are you familiar with the UFS? If so, would you want the UFS to be incorporated into your academic studies?
- (3) Are there any programs or resources that you wish your university offered?
- (4) What do you hope to accomplish from representing academia at the UIFCW 2023?

UIFCW 2023 Student Attendee Feedback

- Little experience with NWP
- No users of UFS, one mention of WRF
- Interest in UFS becoming integrated into general university-level curriculums
- UFS training courses, NWP and coding classes, introductory courses are requested
- Students are attending UIFCW 2023 to present research, network, and familiarize themselves with modeling frameworks
- Representation of academia:
 - Uplifting student voices
 - Gaining forecasting and modeling knowledge to share with peers
 - Learning about current research
 - Discuss progression of academic research

Student Ambassador Insights

- Students want to be heard
- Providing students with hands-on UFS learning experience
- Reaching younger generations
 - Social media platforms
- Engaging and motivating speakers visiting universities
- Allowing students to hear other student experiences
 - UFS success stories
 - Funding and grant information
 - Increases confidence when students are provided reassurance from others
- Create separate training series for undergraduate and graduate students

Anticipated Outcome of UFS Student Engagement Plan Main Goal: getting more students interested and involved with UFS

- Greater stakeholder engagement including students and professors
- Increase in R2O and O2R achievements in academia
- Broadening of diverse UFS and NWP user database

Technological Component

Creation of Short Range Weather and Land DA Technical Report

Tutorials evaluated:

Running Short Range Weather (SRW) packer and infrastructure code installation in the Cloud environment (pre-recorded)

Virtual SRW/packer/AWS sandbox general tutorial

CodeFest Land DA virtual training

Student Perspective-Based Technical Evaluation

Inclusive environment for all platforms in tutorials (Mac, PC, etc.)

- Tutorials for puTTy configuration
- EC2 Instance Connect
- Other SSH clients

Distribution of pre-tutorial materials

- Creation of AWS account
- General terms to know before tutorial
- Explanation of documentation commands

Recommendations for Future Deliverables

Pre-recorded and in-person tutorials: more impactful than virtual

Tutorials that are fast-paced and have quick delivery are not ideal for academic integration

Inclusion of all relevant and required information

Mentioning "i" for inserting text in a file

SRW Reconfiguration to Jupyter Notebooks

** Access through Amazon Web Services (AWS) EC2 Instance Connect **

Why Jupyter Notebooks?

- Appealing to younger programmers
- Organized notebook format
- Documentation command definitions implemented into code
- Can be downloaded and accessed on a browser

Anticipated Outcome of SRW and Land DA Technical Report

Main Goal: ensuring usability of tutorials in an academic setting

- More academic research represented and accelerated in Research to Operations (R2O) journey
- Greater efficiency and impact of UFS tutorials
- More user support leads to greater stakeholder engagement
- Increased incorporation of UFS and Numerical Weather Prediction (NWP) into general academic curriculums
- Connects to enhancing a diverse community of users through Weather Enterprise

What I have Learned/Challenges I Faced

- Trial and error while using AWS during SRW infrastructure tutorials
 - Initial use of incorrect instance connection methods
 - Incorrect EC2 instance settings many issues with running code
 - Running Jupyter Notebooks on EC2 server needed to expand size of instance, change security group settings, and accessing Jupyter online
- University Outreach might not have provided me with enough data to support original project vision
 - Created a second method of outreach UIFCW Student Outreach
 - These results will be included in UFS Student Ambassador Final Report
- Discussing plans of approach with numerous mentors learning about EPIC, how UFS is the future, and how to represent UFS as First Student Ambassador
- Bringing academia to spotlight of community and technological advancements
- Continuing a legacy of community modeling and innovative collaboration
- Creating amazing connections with mentors and leaders throughout NOAA

Future Initiatives for Continuing Research Post-Internship

- Completion of SRW reconfiguration into Jupyter Notebooks
 - Community can successfully access this code on public GitHub UFS repository
- Construction of an UFS/NWP academic lesson plan
 - Continuing to uphold a welcoming environment for academia and young programmers
- Improving methods of outreach and continuing to reach out to both Minority Serving Institutions (MSI) and Historically Black Colleges and Universities (HBCU)
- Attending more CodeFest's and Hackathon's for further analysis and understanding of tutorials
- Include analysis of UIFCW Student Outreach results in final report

References

- Alves, J., Tolman, H., Roland, A., Abdolali, A., Ardhuin, F., Mann, G., Chawla, A., Smith, J. (2023). NOAA's Great Lakes Wave Prediction System: A Successful Framework for Accelerating the Transition of Innovations to Operations. *Bull. Amer. Meteor. Soc.*, 104, E837-E850. <u>https://doi.org/10.1175/BAMS-D-22-0094.1</u>.
- Jacobs, N. (2021). Open Innovation and the Case for Community Model Development. *Bull. Amer. Meteor. Soc.*, 102, E2002-E2011. <u>https://doi.org/10.1175/BAMS-D-21-0030.1</u>.
- Stagnari, A., Dubots, L., Vogt, Jennifer., Huang, M. (2022). Working with Stakeholders: Engaging Sectors to Influence the Future of EPIC and UFS.

Unifying Innovations in Forecasting Capabilities Workshop Report.

Uccellini, L., Spinrad, R., Koch, D., McLean, C., Lapenta, W. (2022). EPIC as a Catalyst for NOAA's Future Earth Prediction System. *Bull. Amer. Meteor. Soc.*, 103, E2246-E2264. https://doi.org/10.1175/BAMS-D-21-0061.1.

