Investigating the Radiative Impact of Saharan Dust Aerosols on Medium Range Forecasts for African Easterly Waves in the Unified Forecast System

Christian Barreto-Schuler; Christopher Thorncroft; Sarah Lu; Dustin Grogan; Shih-Wei Wei

OUTLINE

- **1** BACKGROUND AND MOTIVATION
- **2** UFS EXPERIENCE and EXPERIMENTAL DESIGN
- **3** RESULTS
- 4 DISCUSSION AND FUTURE WORK
- **5** UFS FEEDBACK

1. BACKGROUND AND MOTIVATION

African Easterly Waves (AEWs) are synoptic-scale disturbances that form over sub-Saharan Africa during the West African Monsoon season and are the primary precursor for Atlantic tropical cyclones (Russel et al, 2017).

Li and Sokolik (2018) point out that **dust** (a natural aerosol with average diameter between $0.1-100\mu m$) is one of the most abundant aerosols on the **Earth**, which main source is the **Sahara Desert** (Bullard and Livingstone, 2009).

In addition, during the boreal summer, the dusty **Saharan air layer is vertically extended from 850 to about 500 hPa**, and more westward propagation of dust is enhanced. This behavior is mainly due to atmospheric features, such as low-level jets (**LLJs**), African easterly waves (**AEWs**), etc. (Grogan et al, 2017; Pu and Jin, 2021; Yu et al, 2021).

1. BACKGROUND AND MOTIVATION

0.8 ¥

- 0.4

- 0.2

Temporal evolution of Wind Circulation at 700 hPa (streams), precipitation greater than 1 mm/hr (green contours), and AOD 550nm (shaded) for the period of July 25th - 28th of 2020. Data: MERRA2.

- African Easterly Waves (AEWs) are an **essential part of the dynamics of northwestern Africa and plays an important role in the development of precipitation** over Western Africa, the Tropical Atlantic region, and the Caribbean.
- Our main goal is to evaluate how the increase of dust content in the atmosphere can affect the characteristic and properties of the AEWs.

2. UFS EXPERIENCE and EXPERIMENTAL

EPIC CODEFEST JUNE 2023: Unit Testing Framework for the UFS

JUNE 19-23, 2023

cwbschuler@cheyenne1:/glade/scratch/cwbschuler/ufs-srweather-app> ls								
build	ERRATA.md	jobs	README.md	ufs srweather app meta.h.in				
CMakeLists.txt	etc	lib	rename_model.sh	ufs_srweather_app.settings.in				
devbuild.sh		LICENSE.md	scripts	ush				
devclean.sh	Externals.cfg	manage externals	share	versions				
docs	include	modulefiles	sorc					
environment.yml	input_model_data	parm	tests					

HUFS Short-Range Weather App Users Guide

release/public-v2

Search docs

2. Quick Start Guide

3. Container-Based Quick Start Guide

4. Building the SRW App 5. Running the SRW App

6. SRW Application Components

7. Input and Output Files

8. Limited Area Model (LAM) Grids:

Predefined and User-Generated Options 9. Workflow Parameters: Configuring

the Workflow in config.yaml and config_defaults.yaml

10. Rocoto Introductory Information

11. Workflow End-to-End (WE2E) Tests

12. Graphics Generation

13. FAQ

14. Glossary

SuperOrbital: Partnering with you to deliver mission-critical projects on Kubernetes. Learn more!

Ad by EthicalAds 🔹 🧾

* VFS Short-Range Weather App Users Guide

UFS Short-Range Weather App Users Guide

• 1. Introduction

- 1.1. How to Use This Document
- 1.2. Prerequisites for Using the SRW Application
- 1.2.1. Background Knowledge Prerequisites
- 1.2.2. Software/Operating System Requirements
- 1.3. SRW App Components Overview
- 1.3.1. Pre-Processor Utilities and Initial Conditions
- 1.3.2. Forecast Model
- 1.3.3. Unified Post-Processor (UPP)
- 1.3.4. METplus Verification Suite
- 1.3.5. Visualization Example
- 1.3.6. Build System and Workflow
- 1.4. Code Repositories and Directory Structure
- 1.4.1. Hierarchical Repository Structure
- 1.4.2. Directory Structure
- 1.4.3. Experiment Directory Structure
- 1.5. User Support, Documentation, and Contributions to Development
- 1.6. Future Direction
- 2. Quick Start Guide
- 2.1. Install the HPC-Stack
- 2.2. Building and Running the UFS SRW Application
- 3. Container-Based Quick Start Guide
- 3.1. Download the Container
- 3.1.1. Prerequisites:
- 3.1.2. Working in the Cloud or on HPC Systems
- 3.1.3. Build the Container
- 3.1.4. Allocate a Compute Node
- 3.1.5. Start Up the Container
- 3.2. Download and Stage the Data
- 3.3. Generate the Forecast Experiment
- 3.3.1. Activate the Regional Workflow
- 3.3.2. Configure the Workflow
- 3.3.3. Generate the Workflow

2. UFS EXPERIENCE and EXPERIMENTAL

<u>DESIGN</u>

Period:

2020-07-24T00:00 to 2020-07-30T00:00

Initialization data source:

GFS (0.5°x0.5°) / every 6 hrs

MERRA-2 CLIM. AEROSOL (0.625°x0.5°) (iaer from 5111 to 1111)

Domain and grid spacing:

LatLon Projection scheme Resolution of 25 km 328 x 120 points, centered at 10°W and 15°N GRID_GEN_METHOD: ESGgrid

* Dust

Dust aerosol is represented with 5 bins that correspond to dry size ranges (in $\mu)$ and densities $(kg/m^{-3}):$

bin	1	2	3	4	5
radius	0.73	1.4	2.4	4.5	8.0
radius lower	0.1	1.0	1.8	3.0	6.0
radius upper	1.0	1.8	3.0	6.0	10.0
density	2500	2650	2650	2650	2650

EW_GRID_LATLON_25km":

GRID GEN METHOD: "ESGarid" ESGgrid LON CTR: -10.0 ESGarid LAT CTR: 15.0 ESGgrid DELX: 25000.0 ESGarid DELY: 25000.0 ESGgrid NX: 328 ESGarid NY: 120 ESGgrid PAZI: 0.0 ESGarid WIDE HALO WIDTH: 6 DT ATMOS: 40 LAYOUT X: 16 LAYOUT Y: 10 BLOCKSIZE: 6 QUILTING: WRTCMP write groups: 1 WRTCMP write tasks per group: 32 WRTCMP output grid: "regional latlon" WRTCMP cen lon: -10.0 WRTCMP cen lat: 15.0 WRTCMP lon lwr left: -48.5 WRTCMP lat lwr left: 1.5 WRTCMP lon upr rght: 28.5 WRTCMP lat upr rght: 28.5 WRTCMP dlon: 0.25 WRTCMP dlat: 0.25

2. UFS EXPERIENCE and EXPERIMENTAL

DESIGN Physic Suite: GFS_v16

	GFS_v16		
Radiation (SW/LW)	RRTMG		
Microphysics (MP)	GFDL		
Boundary Layer (PBL)	TKE-EDMF		
Surface Layer (SL)	GFS		
Gravity Wave Drag (GWD)	None		
Land Surface Model (LSM)	Noah		
Deep Convection (DCU)	Sa-SAS		
Shallow Convection (SCU)	sa-MF		
Lake Model (LM)	NSST		

Two Simulations

- **1. CONTROL (CTRL)**: UFS experiment with the original aerosols (dust) concentration from MERRA-2.
- **2. DUSTY_EXP (DU_EXP)**: UFS experiment with eight times the original Dust concentration ("simulating an extreme event").

3. <u>RESULTS</u>: Aerosol Optical Depth (AOD) 550nm

AOD for the DU_EXP simulation (Average over the period July 24th – 28th of 2020)

REFERENCE

3. RESULTS: MERIDIONAL WIND AT 700hPa

Hovmoller Diagram for meridional wind at 700 hPa for both experiments. Average from 10°N-20°N.

3. <u>RESULTS</u>: RELATIVE VORTICITY AT 700hPa and OLR

Hovmoller Diagram (10°N-20°N) of cyclonic vorticity at 700hPa and Outgoing Longwave Radiation (OLR) for the CTRL experiment

Hovmoller Diagram (10°N-20°N) of cyclonic vorticity at 700hPa and Outgoing Longwave Radiation (OLR) for the DU_EXP experiment

10

3. RESULTS: WIND CIRCULATION AND CYCLONIC VORTICITY AT 700hPa

11

3. RESULTS: VERTICAL PROFILE OF TEMPERATURI

3. **RESULTS:** MERIDIONAL DIFFERENCE OF TEMPERATURE (1000-850hPa) and WIND DIFFERENCES

Spatial distribution of the Temperature (°C) in the lower troposphere (average from 1000-850hPa) over tropical northwestern African region.

CTRL in Black and DU_EXP in Red

Temporal evolution of the meridional temperature gradient (difference between the north and south section) for the CTRL and DU_EXP experiments.

ZONAL WIND DIFF. AT 700hPa (DU_EXP - CTRL)

15W Longitude 1.ÓW

20W

2N + 40W

35W

30W

25W

13

4. PRELIMINARY RESULTS AND FUTURE WORK

- Idealized UFS experiments were conducted. The dusty experiment exhibit the following features:
 - The wave structure looks "more defined" in the dusty experiment (DU_EXP), especially once the AEW is over the ocean.
 - More cyclonic vorticity along the AEW identified initially on July 24th. However, it is not necessary the case for the wave initialized on July 26th.
 - Generated less meridional temperature gradient in the lower troposphere, which led to less westward wind and a more meandering circulation.
 - Colder (warmer) temperatures are seen at the levels of 1000-850 hPa (850-550hPa). Once the wave is over the Atlantic ocean, there is no significant temperature differences in the lower troposphere.
- More realistic UFS simulations will be conducted in the future.

5. UFS FEEDBACK

- CODEFEST is a very effective way to spin-up. The EPIC team helped to solve technical issues via zoom virtual room.
- The Users Guide provides detailed information covering many specific aspects. However, the Quick Start section can be further improved. Tutorials are needed for compiling/working in the cloud (AWS).
- Some python and bash scripts could be improved or updated.
- It would be helpful to provide the guidance on how to speed up the run in the Frequently Asked Questions (FAQ) section. For instance, by changing the LAYOUT_X and LAYOUT_Y numbers.

THANK YOU

