Augmenting Covariance Operators with Machine Learning: Generating Dedicated Datasets in the Cloud and a Prototype Model

Sergey Frolov

Timothy A. Smith, Peter Vaillancourt, Jeffrey Whitaker, Zofia Stanley, Wei Huang, Henry R. Winterbottom, Clara Draper

1 NOAA Physical Sciences Laboratory (PSL)

2 Cooperative Institute for Research in Environmental Sciences (CIRES), CU Boulder

3 Lynker Technologies/NOAA/EMC/EIB
Responding to disruptive Machine Learning technologies for NWP

Sergey Frolov will take the blame for controversial and provocative statements

Timothy A. Smith1,2, Peter Vaillancourt1,2, Jeffrey Whitaker1, Zofia Stanley1,2, Wei Huang1,2, Henry R. Winterbottom3, Clara Draper1

NOAA Physical Sciences Laboratory (PSL)

2Cooperative Institute for Research in Environmental Sciences (CIRES), CU Boulder

3Lynker Technologies/NOAA/EMC/EIB
Over the last 18 months, ML models (trained on ERA5) demonstrated performance competitive to ECMWF HRES forecast (ECMWF 2023).

ECMWF treat ML as an existential threat and a transformative opportunity to their business-as-usual model. And so should NOAA!!!

ML models are trained on a 10-year old ERA5 technology yet are competitive with the state-of-the-art:

- Initial conditions from the operational state-of-the-art model do matter! **Unique role for NOAA operations.**
- Current generation of ML models is too diffuse and possibly not dynamically consistent? **This is getting improved by the external community.**
- Current generation of ML models was not designed for data assimilation. **A niche for NOAA research.**
- High-quality training datasets are of paramount importance. **A new-ish opportunity for NOAA.**
Focus on producing high-value, cloud-ready, ML-ready training datasets:
 ○ 1957-present replay of the UFS coupled model to high-fidelity external analysis (ERA5/ORAS5);
 ○ Native coupled reanalysis and reforecast with UFS
 ○ Short hero runs with extremely large ensemble counts (upto 800 members)

Cloud-ready, ML-ready perspective:
 ○ Use NODD to allow users to co-locate NOAA datasets with computation
 ○ Move away from legacy output formats (grib, netcdf, flat files) to cloud-ready formats (zarr, netcdf+kerchunk)
 ○ Provide data on grids suitable for ML development

Focus on ML development for data assimilation:
 ○ Operator replacement in DA
 ○ Perturbation models for ensemble propagation
Case study: Enabling Strongly Coupled DA

Strongly coupled data assimilation:

- Allows observations from atmosphere to impact ocean, and vice versa;
- Expected improvement in S2S & hurricane forecasting.

However, cross-domain covariances are intermittent and low amplitude

Many more ensemble members are required to accurately estimate covariances

How to reduce this cost in order to enable SCDA?
Prototype: Predicting AST-SST Correlation

The correlation structure from the 80 member ensemble is captured well by 5 members + neural network

See github.com/NOAA-PSL/mlcdc for details
Current work: Dedicated Datasets for ML+DA

Expand original prototype

- 1 degree, 800 members, spanning 3 months
- ¼ degree, 240 members, spanning 1 month
- Data will be generated using RDHPCS cloud allocation
- Resulting datasets will be made publicly available in Zarr format through NODD

Challenges:

- It is extremely hard to support this work using competitive NOAA funding
Conclusions

- The last 18 months of groundbreaking results from the ML community challenge our existing NWP business model.

- NOAA has a role to play in the emerging need and opportunity for:
 - Producing training data for ML models
 - Co-locating NOAA data with computational opportunities in cloud-native, ML-native formats
 - Investing in ML research to augment and transform our current operational stack.
END: Questions
Constructing a Neural Network Vertical Correlation Model

Training, validation, & testing dataset

- Weakly coupled atmosphere & ocean UFS model
- 80 members
- Single 24-hr forecast

Architecture

- Feed forward neural network
- Input: 5-member average surface quantities (e.g., 2m temperature & humidity, SST, mixed layer depth)
- Output: vertical temperature correlation, as if we had used 80 members
- Each grid cell is treated independently

Main question: is the correlation signal predictable, based on a very small ensemble average of surface quantities?
How can NWP enterprise adjust to the ML era?

Existing NOAA/NWP model:
focused on forecasts
How can NWP enterprise adjust to the ML era?

Existing NOAA/NWP model: focused on forecasts

New model?
ML training datasets are equally important to external users and quality of operational forecasts
Proposed concept: augment a small ensemble with a neural network
Status quo: operational ensembles require many members and parameterizations.

Parameterized Covariance Model
- Localization
- Inflation
- Static hybrid gain