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Machine learning: an existential threat to the NWP model?

● Over the last 18 month, ML models (trained on ERA5) demonstrated performance competitive 

to ECMWF HRES forecast (ECMWF 2023)

● ECMWF treat ML as an existential threat and a transformative opportunity 
to their business-as-usual model. And so should NOAA!!!

https://arxiv.org/pdf/2211.02556.pdf



A more nuanced look

ML models are trained on a 10-year old ERA5 technology 

yet are competitive with the state-of-the art:

● Initial conditions from the operational 

state-of-the-art model do matter! Unique role for 

NOAA operations.  

● Current generation of ML models is too diffuse and 

possibly not dynamically consistent? This is getting 

improved by the external community.

● Current generation of ML models was not designed 

for data assimilation. A niche for NOAA research. 

● High-quality training datasets are of paramount 

importance. A new-ish opportunity for NOAA. 

https://arxiv.org/pdf/2211.02556.pdf
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Current generation of ML is too diffusive and 
may lack physical structure



● Focus on producing high-value, cloud-ready, ML-ready training datasets:
○ 1957-present replay of the UFS coupled model to high-fidelity external analysis (ERA5/ORAS5);
○ Native coupled reanalysis and reforecast with UFS
○ Short hero runs with extremely large ensemble counts (upto 800 members)

● Cloud-ready, ML-ready perspective:
○ Use NODD to allow users to co-locate NOAA datasets with computation
○ Move away from legacy output formats (grib, netcdf, flat files) to cloud-ready formats 

(zarr, netcdf+kerchunk)
○ Provide data on grids suitable for ML development

● Focus on ML development for data assimilation:
○ Operator replacement in DA
○ Perturbation models for ensemble propagation

NOAA PSL perspective and focus



Strongly coupled data assimilation: 

● Allows observations from atmosphere to impact ocean, 
and vice versa;

● Expected improvement in S2S & hurricane forecasting.

However, cross-domain covariances are intermittent and low 
amplitude

Many more ensemble members are required to accurately 
estimate covariances

How to reduce this cost in order to enable 
SCDA?

Case study: Enabling Strongly Coupled DA

SCDA regime

Atm.only regime



Prototype: Predicting AST-SST Correlation

See github.com/NOAA-PSL/mlcdc for details

The correlation structure from the 80 member ensemble is captured well 
by 5 members + neural network

True correlations from 
80 member ensemble

Correlations predicted by NN 
from 5 member ensemble

http://github.com/NOAA-PSL/mlcdc


Current work: Dedicated Datasets for ML+DA

Expand original prototype 

● 1 degree, 800 members, spanning 3 months

● ¼ degree, 240 members, spanning 1 month

● Data will be generated using RDHPCS cloud allocation

● Resulting datasets will be made publicly available in Zarr format through NODD

Challenges:

● It is extremely hard to support this work using competitive NOAA funding



Conclusions

● The last 18 months of groundbreaking results from the ML community challenge our 

existing NWP business model.

● NOAA has a role to play in the emerging need and opportunity for:
○ Producing training data for ML models

○ Co-locating NOAA data with computational opportunities in cloud-native, ML-native formats

○ Investing in ML research to augment and transform our current operational stack. 



END: Questions



Constructing a Neural Network 
Vertical Correlation Model

Training, validation, & testing dataset

● Weakly coupled atmosphere & ocean UFS model

● 80 members 

● Single 24-hr forecast

Architecture

● Feed forward neural network

● Input: 5-member average surface quantities (e.g., 2m 

temperature & humidity, SST, mixed layer depth)

● Output: vertical temperature correlation, as if we had 

used 80 members

● Each grid cell is treated independently
Main question: is the correlation signal 

predictable, based on a very small 
ensemble average of surface quantities?

Atmosphere-ocean correlations from ~1,000 
member ensemble



How can NWP enterprise adjust to the ML era? 
Existing NOAA/NWP model: 

focused on forecasts



How can NWP enterprise adjust to the ML era? 
Existing NOAA/NWP model: 

focused on forecasts
New model? 

ML training datasets are equally important 
to external users and quality of operational 

forecasts



Proposed concept: augment a small ensemble with a 
neural network



Parameterized 
Covariance Model
- Localization
- Inflation
- Static hybrid gain

Status quo: operational ensembles require many 
members and parameterizations


