Unifying Innovations in Forecasting Capabilities Workshop

Emerging Applications 2 - Space Weather

Going Beyond the Terrestrial Space Weather Verification Using METplus

JONATHAN L. VIGH

PROJECT SCIENTIST I Joint Numerical Testbed - Research Applications Laboratory – National Center for Atmospheric Research

NCAR RESEARCH APPLICATIONS

3:00 PM Thursday, 27 JULY 2023

NCAR and SWPC Team

Jonathan L. Vigh¹, Terrance G. Onsager², Tara L. Jensen¹, Dominic J. Fuller-Rowell³, Jun Wang³, Mihail Codrescu², Tibor Durgonics³, Charlotte Martinkus³, Naomi Maruyama⁴, Frank Centinello², Timothy J. Fuller-Rowell², Robert Steenburgh²

(1) National Center for Atmospheric Research, Boulder, CO, United States

(2) NOAA Space Weather Prediction Center, Boulder, CO, United States

(3) University of Colorado/CIRES, Boulder, CO, United States

(4) University of Colorado/LASP, Boulder, CO, United States

NCAR

NASA (Crew of STS-39)

Overview

The Space Weather Prediction Center Real-time Evaluation System (SWPC-RT) is a platform-independent, container-based verification system whose purpose is to apply advanced methods and techniques to space weather verification

SWPC-RT provides:

NCAR

- Ability to bring the **capabilities of METplus** to bear on space weather evaluation
- The capability to read analyses, model output, and forecasts in their **native data formats**
- Embedded support to conduct interactive interrogations of verification sets using **METViewer**
- The ability to use **other Python packages** to do complex calculations on geophysical datasets

Why METplus?

Forecasters

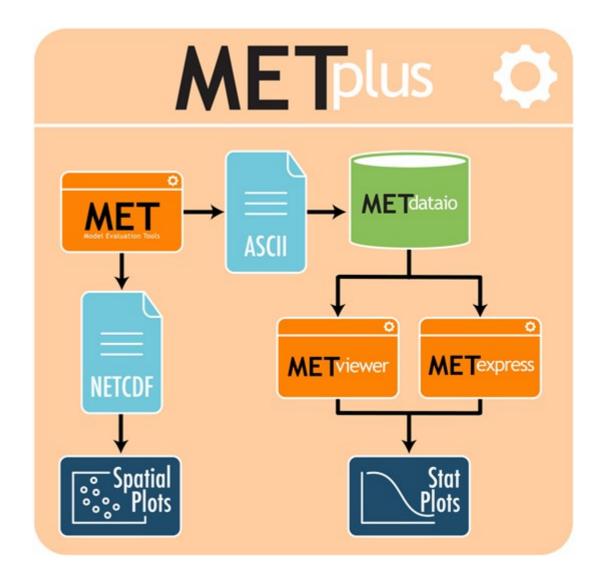
Operational Centers

Universities & national labs

Comprehensive and Unified Verification Tools *Make R2O more efficient *Provide a consistent set of metrics

Allows researchers and operational scientists to speak a "common verification" language

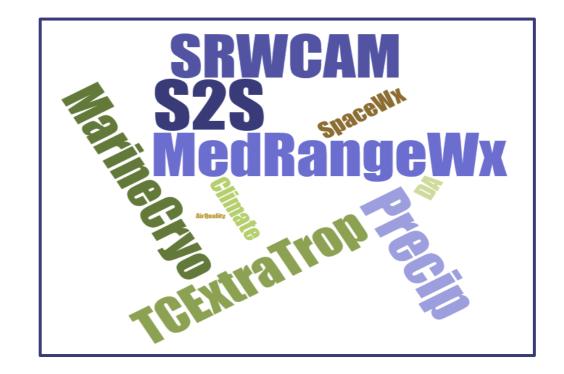
User support of unified package provides greater opportunity to train all on verification best practices Highly-configurable, state-of-the-art suite of verification tools, a suite of python wrappers, and other supporting capabilities allow for complex real-time and retrospective verification workflows to be simplified and codified for robustness and reproducibility.

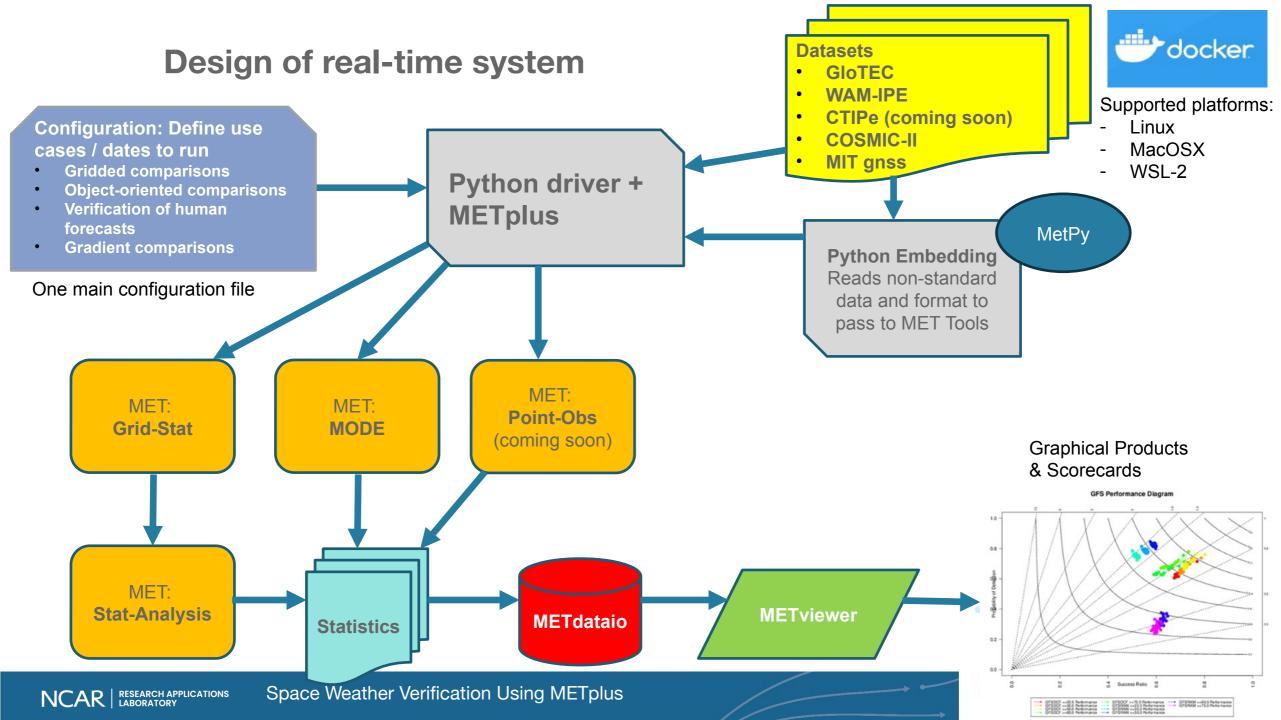

UIFCW 2023 A UFS Collaboration Powered by EPIC

NCAR | RESEARCH APPLICATIONS Space Weat

Space Weather Verification Using METplus

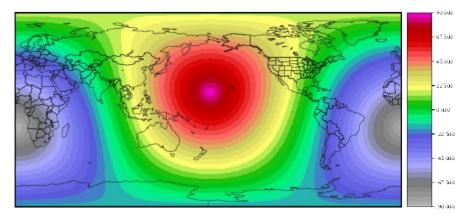
What is METplus?


- Over 100 traditional statistics and diagnostic methods for both point and gridded datasets
- 15 interpolation methods
- Applied to many spatial and temporal scales
- Developed to allow for easy sharing of config files for reproducible results
- 3500+ users; US and International
- At the core of EMC Verification System for UFS

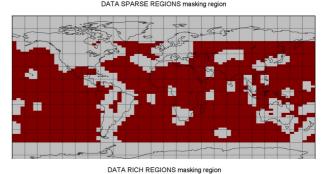


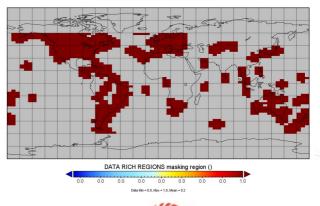
What is METplus?, cont'd

- Suite of Python wrappers around:
 - MET tools (core)
 - Traditional statistics
 - Spatial methods
 - Additional diagnostics
 - Database and display systems
 - METviewer for deep dive data interrogation
 - METexpress for quick analysis
 - Analysis and plotting tools
 - Python tools support database and display systems
 - Developing command line option to run on HPCs and in containers



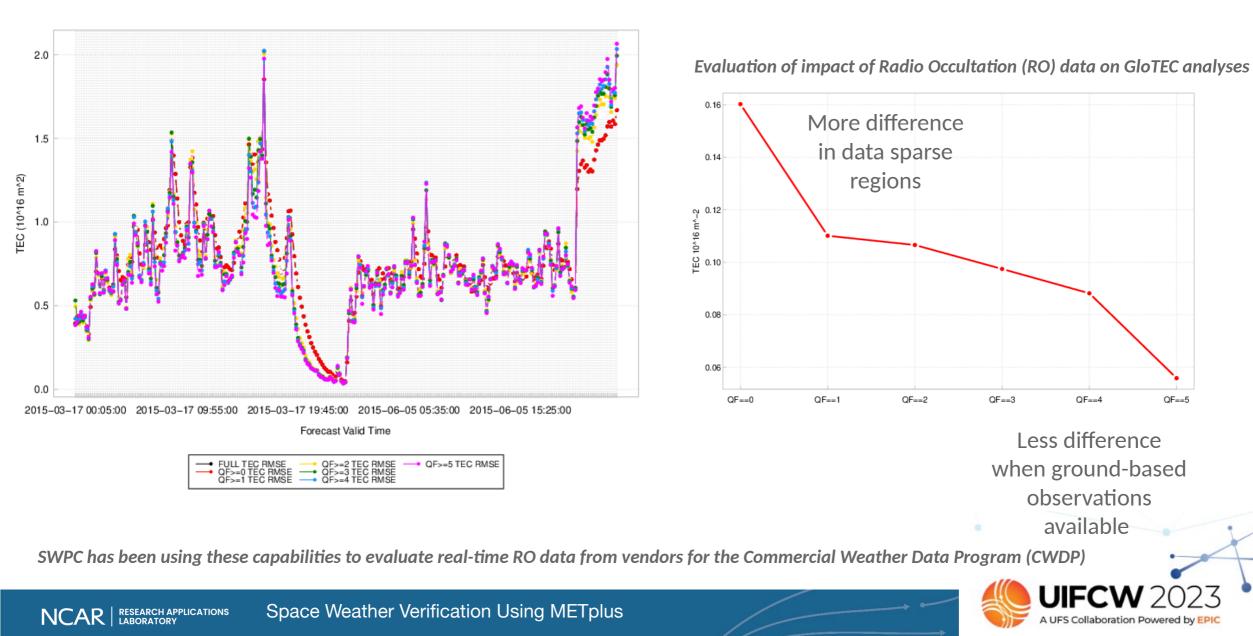
Gridded Comparisons


SWPC-RT uses METplus' GridStat tool to undertake gridded comparisons of models with analyses.


Key adaptations for the space-weather domain include:

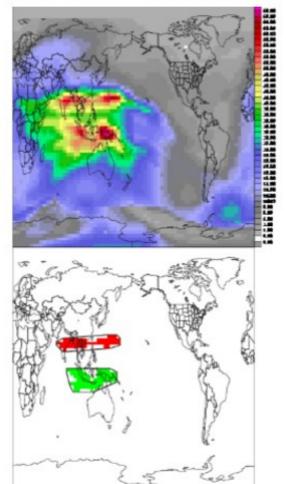
- Adaptation for space weather variables like Total Electron Content (TEC)
- **Custom masks**, e.g., distance from ionospheric ground stations
- Time-dependent masking by
 - azimuthal solar angle
 - quality flag based on the # of Radio Occultation (RO) rays
- Python embedding scripts to read data in its native format

solar_alt_00.nc

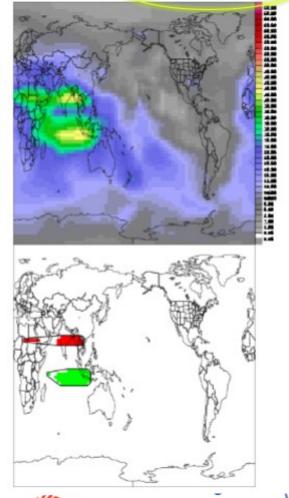


Examples of Gridded Comparisons

GIOTEC w/COSMIC vs. w/o - RMSE



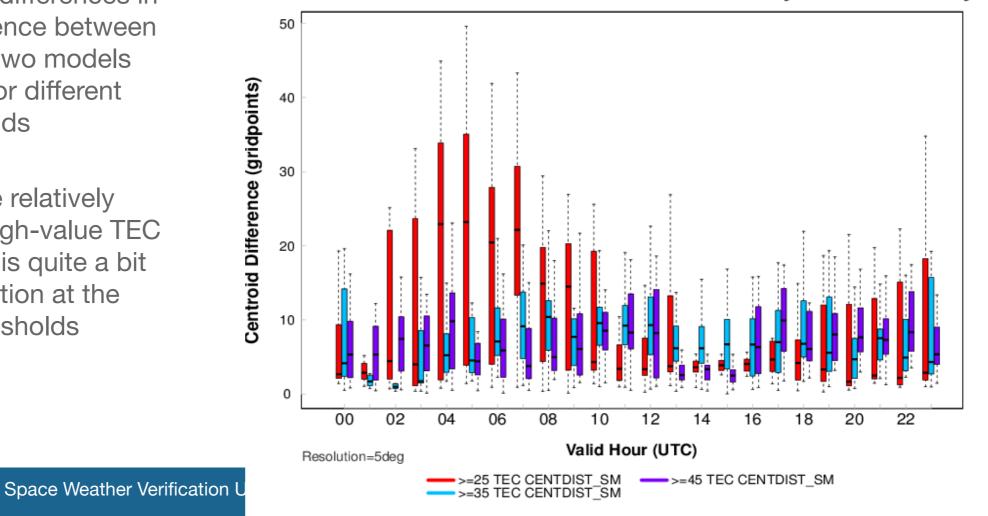
Object-Oriented Comparisons MET Tool: MODE


- METplus' MODE tool allows object-oriented comparisons of gridded the physical models (e.g., WAM-IPE) with an empirical model analysis (GloTEC)
- This allows examination of object attributes such as:
 - centroid distance
 - area ratio
 - axis angle
 - intensity ratio

Object-oriented comparisons helped SWPC identify a bias in WAM-IPE in which TEC in high regions was ~10 TEC units greater than GloTEC

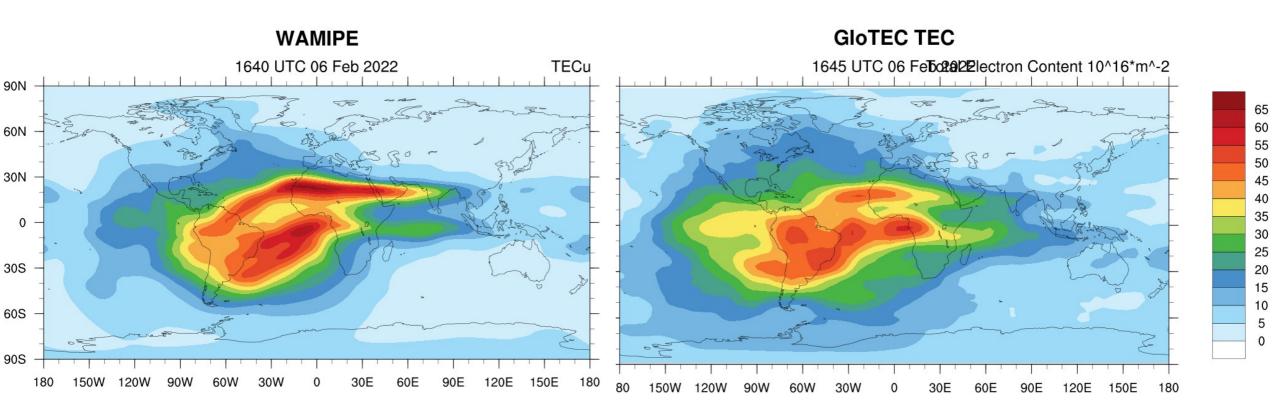
WAM-IPE >45 TECunits

GIoTEC >35 TECunits

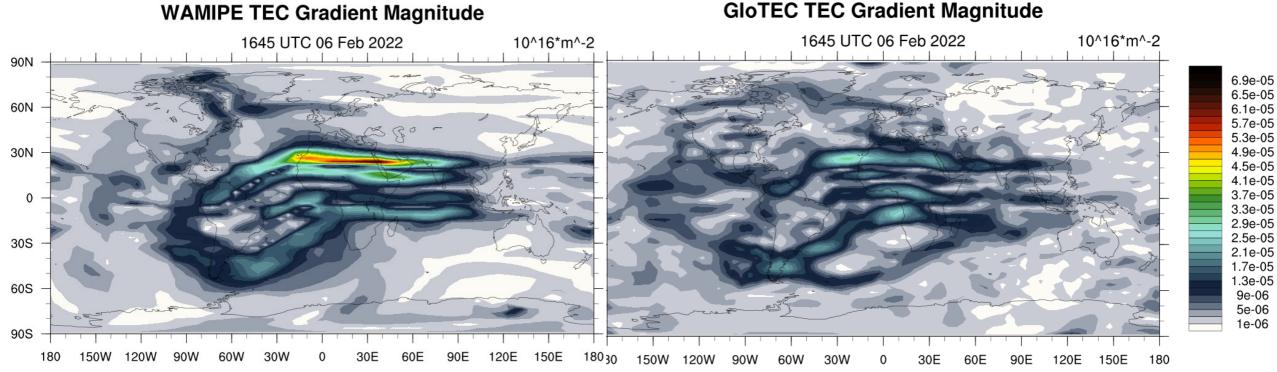

MODE Example

- Distribution of differences in centroid difference between objects in the two models by valid hour for different object thresholds
- Differences are relatively small for the high-value TEC objects. There is quite a bit of diurnal variation at the lower TEC thresholds

RESEARCH APPLICATIONS LABORATORY


NCAR

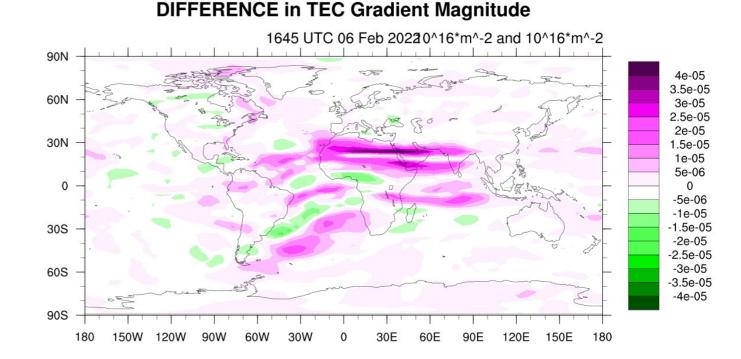
WAM-IPE MODE Centroid Difference – Hourly – Matched Only


TEC gradient comparisons

- TEC gradients lead to instability which can cause ionospheric irregularities
- The resulting undulations can lead to scintillation, which can significantly impact radio communications
- A new use case allows SWPC-RT to compute the gradient magnitude of TEC and compare these between model and analysis

TEC gradients

- MetPy's geospatial gradient function used to calculate the gradient magnitude for each field
- Computation is done at the time it is read into the system using python embedding
- This function computes the gradient accurately on the sphere using map factors.



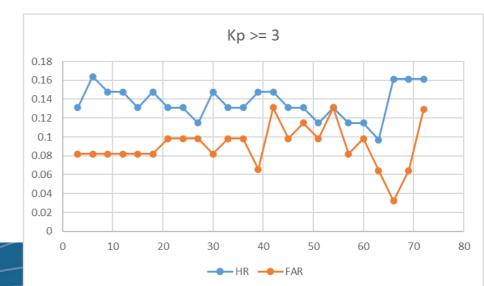
9e-06 5e-06 1e-06

Scintillation

- Scintillation is likely near areas of high TEC gradients
- Goal of future development is to explore the relationship between TEC gradients and point observations of scintillations

NCAR

Verification of human forecasts


- SWPC's human forecasters provide forecast the Kp index
- The input data are in Json format

NCAR

- This use case computes contingency tables by forecast lead time
- Event being forecast is a threshold of Kp >= 3
- Each line is a separate contingency table for the respective forecast lead time
- FY_OY means the event was forecast and it was also observed (a "hit")
- FY_ON gives the number of times that the event was forecast but not observed (a "false alarm"), etc.

Event: Kp >=3

OL.	NAME:	FCST_LEAD	TOTAL	FY_0Y	FY_ON	FN_0Y	FN_ON	EC_VALUE	
	CTC:	12	61	9	5	5	42	0.5	
	CTC:	15	61	8	5	6	42	0.5	
	CTC:	18	61	9	5	5	42	0.5	
	CTC:	21	61	8	6	6	41	0.5	
	CTC:	24	61	8	6	6	41	0.5	
	CTC:	27	61	7	6	7	41	0.5	
	CTC:	3	61	8	5	6	42	0.5	
	CTC:	30	61	9	5	5	42	0.5	
	CTC:	33	61	8	6	6	41	0.5	
	CTC:	36	61	8	6	6	41	0.5	
	CTC:	39	61	6	6	7	42	0.5	
	CTC:	42	61	9	8	4	40	0.5	
	CTC:	45	61	8	6	5	42	0.5	
	CTC:	48	61	8	7	5	41	0.5	
	CTC:	51	61	7	6	6	42	0.5	
	CTC:	54	61	8	8	5	40	0.5	
	CTC:	57	61	7	5	6	43	0.5	
	CTC:	6	61	10	5	4	42	0.5	
	CTC:	60	61	7	6	6	42	0.5	
	CTC:	63	31	3	2	4	22	0.5	
	CTC:	66	31	5	1	2	23	0.5	
	CTC:	69	31	5	2	2	22	0.5	
	CTC:	72	31	5	4	2	20	0.5	
	CTC:	9	61	9	4	5	43	0.5	

Thank you for your attention

- Jonathan Vigh, jvigh@ucar.edu
- Tara Jensen, jensen@ucar.edu
- Terry Onsager, <u>terry.onsager@noaa.gov</u>
- METplus Resources

- METplus home page: <u>https://dtcenter.org/community-code/metplus</u>
- METplus discussions support: <u>https://github.com/dtcenter/METplus/discussions</u>
- METplus documentation: <u>https://metplus.readthedocs.io/en/latest/Users_Guide/</u>

NCAR

RESEARCH APPLICATIONS

NCAR RESEARCH APPLICATIONS

Space Weather Verification Using METplus