
Seeking portability and productivity for NWP model code
Christian Kühnlein (ECMWF)

Till Ehrengruber (CSCS), Stefano Ubbiali, Nicolai Krieger, Lukas Papritz, Alexandru Calotoiu, Heini Wernli (all ETH Zurich)

NOAA Weather Forecasting Office, Unifying Innovations in Forecasting Capabilities Workshop 2023
Keynote: Emerging Technologies & Opportunities: GPU and Earth System Modeling

Seeking portability and productivity

Operational IFS: Main ECMWF scalability & portability efforts prepare the spectral-transform forecast model for hybrid
CPU+GPU execution. Automatic code translation tools are developed and employed, accompanied by restructuring
core model components and various technical infrastructure packages. Fortran is largely maintained and GPU
execution is enabled mostly by means of OpenACC directives.

v Emerging technologies offer great potential for higher numerical resolution and energy efficiency. At the same time,
ESMs face an increasingly diverse landscape of supercomputing architectures.

v Efficient execution requires targeted hardware-specific optimization. Serving various hardware inevitably involves
more complex code that needs to be organized to maintain productivity.

Future IFS with new dynamical core: We are rewriting (from existing Fortran) and further developing the forecast
model in Python with the domain-specific library GT4Py, in close collaboration with partners at CSCS and ETH Zurich.
The forecast model is building on finite-volume non-hydrostatic dynamical core with the IFS physical parametrizations.

Two parallel streams of development at ECMWF:

GT4Py domain-specific library

q Software programming implementation using the domain-specific library GT4Py (Gridtools for Python) for stencil
computations in grid-point NWP and climate models (Afanasyev et al. 2021).

q https://github.com/GridTools/gt4py (public, open source)

q GT4Py works as an optimizing compiler for multiple backends:

• Code generation optimized for a specific architecture
• Backend selects HPC implementation strategy (e.g., parallelization, memory layout, etc)
• Backends can be added to provide efficient implementations for new technologies / architectures
• Leverages knowledge of the typical computation patterns in the domain

q GT4Py is embedded in the Python eco-system

• Portable and productive programming environment
• Broad and comprehensive selection of modules and libraries
• Most popular data scientist language
• Low barrier of entry for domain scientists and academia

https://github.com/GridTools/gt4py

GT4Py domain-specific library
GT4Py Version 1

14

GTIRGTScript

General Optimizers

C++ CPU

Cuda GPU

Dace

Backend specific
Optimizers

C++

Cuda C++

C++

Debug Python

Results

Backend Implementation
Codegen

Execution

GTC toolchain

GT4Py framework

Established GT4Py “Version 1” for
structured (I, J, K) grids.
See Afanasyev et al. 2021; Ben-Hun et al.
2022.

Declarative GT4Py with new interface
& toolchain and supporting horizontally
unstructured, e.g., (IJ, K), grids.
This is an ongoing development, see e.g.
Bianco et al. PASC2023 poster.

à Results in subsequent slides are based on
structured (I, J, K) grid model.

GT4Py domain-specific library

Schematic from
Ubbiali et al. in
prep. 2023

GT4Py domain-specific library

q Three comprehensive GT4Py based NWP and climate model software development projects (all
coming from original Fortran implementations that were optimized for CPUs):

• Pace is a GT4Py Version 1 implementation of the FV3GFS / SHiELD atmospheric model of NOAA
and GFDL by Allen Institute for AI (AI2), ETH Zurich, and CSCS.

• ICON atmospheric model dynamics and physics incrementally ported to declarative GT4Py by
MeteoSwiss, EXCLAIM project at ETH Zurich and CSCS.

• IFS-FVM porting and further development in Version 1 & declarative GT4Py by ECMWF, CSCS, and
PASC-funded project KILOS at ETH Zurich.

Starting point

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

Tuesday 22 May 2018 00 UTC ECMWF IFS-ST t+84 VT: Friday 25 May 2018 12 UTC, Surface Total Precipitation (mm/day)

0.08

0.15

0.3

0.65

1.3

2.7

5.6

11.5

23.7

48.6

100

205

400

864

1775

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

Tuesday 22 May 2018 00 UTC ECMWF IFS-FVM t+84 VT: Friday 25 May 2018 12 UTC, Surface Total Precipitation (mm/day)

0.08

0.15

0.3

0.65

1.3

2.7

5.6

11.5

23.7

48.6

100

205

400

864

1775

20°N 20°

60°W

60°W

track_fcall_hg7x_20170904_00_2017.IRMA

880 890 900 910 920 930 940 950 960

Operational IFS-ST

FVM

120h TC Irma reforecast with FVM using O1280 (9km) grid

Snapshot total precip at 84h

• FVM original Fortran code with hybrid
MPI & OpenMP parallelization
targeting CPU based supercomputers

• Carefully optimized with good
computational performance, e.g., against
H and NH spectral-transform IFS for
dynamical cores

• Operated on IFS octahedral grid
provided by ECMWF Atlas library
support

Dynamical core time-to-solution for DCMIP2016
baroclinic wave with TCo1279 / O1280 (9km)
grid and L137 on 350 nodes (12800 cores) of
ECMWF’s former Cray XC40

X
Y

Z

O24

Done back in
2018/2019

Seamless execution of structured-grid FVM with various GT4Py backends

The single model domain/user interface in Python with
embedded GT4Py for stencil computations seamlessly
drives various backends by a simple switch, e.g.,:

v gt:cpu_ifirst: C++ CPU where array layout is (I, J, K)
v gt:cpu_kfirst: C++ CPU where array layout is (K, I, J)
v gt:gpu: Gridtools CUDA C++
v cuda: native CUDA C++
v dace:gpu: GPU backend leveraging the Data-Centric

Parallel Programming Framework (DaCe, Ben-Hun et al.
2019, 2022). See https://github.com/spcl/dace .

One single user / domain interface multiple targeted backends

https://github.com/spcl/dace

Validating the GT4Py based dynamical core against references models

Shown is pressure on lowest level (hPa) at
day 10 of DCMIP2016 baroclinic wave

FVM original Fortran code on octahedral grid (runs on CPUs only)

Spectral-transform IFS (ECMWF operational dynamical core) on
octahedral grid

FVM implemented entirely in Python with GT4Py Version 1 on regular
lat-lon grid (runs with various backends on CPUs and GPUs)

Reduced precision

As with the original Fortran FVM code, we can
run the GT4Py based FVM with either 64-bit
or 32-bit precision.

Results for DCMIP2016 moist baroclinic wave with
dynamical core coupled to ECMWF cloud scheme.
Shown are cloud fraction at about 2 km above the
surface (shading) and surface pressure (contour
levels with 10 hPa interval) at day 10.

Runtime measures on CSCS Piz Daint supercomputer
show increased computational performance with 32-bit
precision. Expected speed-up from 64-bit to 32-bit on
CPUs, but very little improvement with GPUs here.

Distributed model

• Weak scaling of structured-grid FVM nearly-global configuration (latitude +-80deg) coupled to IFS cloud scheme.
• Here we test scaling across the CPU or the GPU partitions of CSCS’ Piz Daint supercomputer.
• Halo exchanges based on GHEX -- Generic Exascale-ready Library for Halo-Exchange Operations – with Python

bindings. GHEX is developed at CSCS and supported by PRACE – Partnership for Advanced Computing in Europe.

GT4Py for ECMWF parametrizations and TL/AD model code

• In the PASC funded KILOS project at ETH Zurich, we have been exploring the porting of IFS physical
parametrizations to Python with GT4Py. Performance comparisons for ECMWF’s prognostic cloud scheme
CLOUDSC (a).

• CLOUDSC2 is the simplified cloud scheme with tangent-linear (TL) and adjoint (AD) model used in 4DVAR
assimilation. Timings for running the TL/AD symmetry test on CPUs and for the first time on GPUs is shown
in (c). Study is currently extended and prepared for publication (Ubbiali et al. in prep. 2023).

All computations performed
on CSCS Piz Daint (CPU or
GPU partitions)

Upcoming: FVM implementation based on the declarative GT4Py

X
Y

Z

Python embedded GT4Py Field Operator
example for simple Upwind scheme:

Goal for 2024: Optimized declarative GT4Py-based global non-hydrostatic dynamical core in GPU distributed configuration

@program: Sequence of (stateful) operator calls transforming the input
args and writing back the return value to a specified output field

@field_operator: covering all common patterns of finite-volume stencils
with multiple field operations

@scan_operator: expressing computations with sequential
dependencies such as in direct implicit schemes and physical
parametrizations

Three main operator concepts:

Thank you for listening!

