Seeking portability and productivity for NWP model code

Christian Kiihnlein (ECMWEF)

Till Ehrengruber (CSCS), Stefano Ubbiali, Nicolai Krieger, Lukas Papritz, Alexandru Calotoiu, Heini Wernli (all ETH Zurich)

NOAA Weather Forecasting Office, Unifying Innovations in Forecasting Capabilities Workshop 2023
Keynote: Emerging Technologies & Opportunities: GPU and Earth System Modeling

s CscCs
\‘ ‘ Centro Svizzero di Calcolo Scientifico

m C MWF AN Swiss National Supercomputing Centre
|
-y E —

Platform for Advanced Scientific Computing ./‘ \ ®

C esiwace ETHziirich ~ 4® UIFCW 2023

This project has received funding from the European Union’s Horizon Europe I’ A UFS Collaboration Powered by EPIC
research and innovation programme under grant agreement No 101093054.

Seeking portability and productivity

\

% Emerging technologies offer great potential for higher numerical resolution and energy efficiency. At the same time,
ESMs face an increasingly diverse landscape of supercomputing architectures.

Efficient execution requires targeted hardware-specific optimization. Serving various hardware inevitably involves
more complex code that needs to be organized to maintain productivity.

J

Two parallel streams of development at ECMWEF:

Operational IFS: Main ECMWEF scalability & portability efforts prepare the spectral-transform forecast model for hybrid
CPU+GPU execution. Automatic code translation tools are developed and employed, accompanied by restructuring
core model components and various technical infrastructure packages. Fortran is largely maintained and GPU
execution is enabled mostly by means of OpenACC directives.

Future IFS with new dynamical core: We are rewriting (from existing Fortran) and further developing the forecast
model in Python with the domain-specific library GT4Py, in close collaboration with partners at CSCS and ETH Zurich.
The forecast model is building on finite-volume non-hydrostatic dynamical core with the IFS physical parametrizations.

—e

«

— 4@ UIFCW 2023
> T . . ﬁ\];" A UFS Collaboration Powered by EPIC

_w EC MWF \“:‘ (S)Csvr:gngzm di Calcolo Scientifico n ﬂ J E mzur, Ch ‘(f\ e S IWG C e w

National Supercomputina Centre Platform for Advanced Scientific Computing

GT4Py domain-specific library

Q Software programming implementation using the domain-specific library GT4Py (Gridtools for Python) for stencil
computations in grid-point NWP and climate models (Afanasyev et al. 2021).

Q https://github.com/GridTools/gt4py (public, open source) .'. o °
<+ GridTools

QO GT4Py works as an optimizing compiler for multiple backends:

» Code generation optimized for a specific architecture

» Backend selects HPC implementation strategy (e.g., parallelization, memory layout, etc)

» Backends can be added to provide efficient implementations for new technologies / architectures
 Leverages knowledge of the typical computation patterns in the domain

U GT4Py is embedded in the Python eco-system

» Portable and productive programming environment

« Broad and comprehensive selection of modules and libraries
« Most popular data scientist language

* Low barrier of entry for domain scientists and academia

—e

-
4@ UIFCW 2023 :

> " " . M 5 AUFS Collaboration Powered by EPIC
_c EC MWF \“:‘ (S)csvr:gngizm di Calcolo Scientifico n ﬂ J E mzur, Ch @\ e S |WG C e -

National Supercomputina Centre Platform for Advanced Scientific Computing

https://github.com/GridTools/gt4py

GT4Py domain-specific library

GT4Py framework
GTC toolchain Backend Implementation

Codegen
Execution

Established GT4Py “Version 1” for
structured (I, J, K) grids. oTsorpt —-
See Afanasyev et al. 2021; Ben-Hun et al. @

2022.

_—
_—
_—
_—

INV%

General Optimizers

-2 Results in subsequent slides are based on
structured (1, J, K) grid model.

=T
==
=
=N
5

Backend specific
Optimizers

Toolchain

Parsing Lcwéring Code géneration Compilation

— _— _ _—

Declarative GT4Py with new interface S
& toolchain and supporting horizontally Prion Frovend | — i
unstructured, e.g., (1J, K), grids. P - @D S
This is an ongoing development, see e.g. | =)

Bianco et al. PASC2023 poster.

Python Callable

object

Python —_—

— -

Optimizations

Embedded execution

v \
50 F .‘. Ccsc . A@® UIFCW 2023
M) /A UFS Collaboration Powered by EPIC
A4 ECMW ‘:0 Ce"ﬁ S"S‘"" nercomovin Gan rn ﬂ o m Z U' 'I“ I C h (@ QSIWCI Ce e

Swiss National Sunercomputing Centre Platform for Advanced Scientific Computing

GT4Py domain-specific library

@gtscript.stencil(backend="...")
def laplacian(
in_phi: gtscript.Field[float], out_lap: gtscript.Field[float]
)E
vith computation(PARALLEL), interval(...):
out_lap[0, 0, 0] = - 4 * in_phi[0, 0, 0] \
+ in_phi[-1, 0, 0] + in_phi[1, O, 0] \
+ in_phi[0, -1, 0] + in_phi[0, 1, 0]

& Frontend
& Optimizations

NumPy | | GridTools DaCe Backends

& @ & Code generati
AN

AN AN
Vectorized | | Optimized | | Optimized
Python C++ C++

Schematic from
{} {} @ Bindings Ubbiali et al. in

laplacian(phi, lap, origin=(1, 1, 0), domain=(nx-2, ny-2, nz)) prep. 2023 o
A@® UIFCW 2023 :
n “ CSCS L — T . . /‘;E A UFS Collaboration Powered by EPIC
_w ECMWF \\‘“ Centro Svizzero di Calcolo Scientifico n ﬂ J E mzur, Ch @\ eS|W0 Ce '

Swiss National Sunercomputing Centre Platform for Advanced Scientific Computing

GT4Py domain-specific library

U Three comprehensive GT4Py based NWP and climate model software development projects (all
coming from original Fortran implementations that were optimized for CPUs):

 Paceis a GT4Py Version 1 implementation of the FV3GFS / SHIELD atmospheric model of NOAA
and GFDL by Allen Institute for Al (Al2), ETH Zurich, and CSCS.

+ ICON atmospheric model dynamics and physics incrementally ported to declarative GT4Py by
MeteoSwiss, EXCLAIM project at ETH Zurich and CSCS.

* IFS-FVM porting and further development in Version 1 & declarative GT4Py by ECMWF, CSCS, and
PASC-funded project KILOS at ETH Zurich.

® s 4@ UIFCW 2023 :

[— .)5~ A UFS Collaboration Powered by £7IC
CECMWF <30 oo K ETHzlirich Cesiwace °

Ce
Swiss National Sunercompul tina Centre Platform for Advanced Scientific Computing

Starting point

FVM original Fortran code with hybrid
MPI & OpenMP parallelization
targeting CPU based supercomputers

n
T
—_

o) 20h TC Irma reforecast with FVM using 01280 (9km) gr
« Carefully optimized with good 18 - . e

computational performance, e.g., against
H and NH spectral-transform IFS for
dynamical cores

Tuesday 22 May 2018 00 UTC ECMWF IFS-ST +84 VT: Friday 25 May 2018 12 UTC, Surface Total Precipitation (mm/day)

15 Done back in - N S S Y
{ 2018/2019 : : :

* Operated on IFS octahedral grid
provided by ECMWF Atlas library
support] I

elapsed time (min/forecast-day)

AN SRR
s, S50 T e e ew wew ww ww mw o we or wr wv e e e e
2SS SIS S SSAN
?é""'#‘%ﬂﬂ“%ﬂﬁh FV(NH) ST(H) ST(NH) Tuesday 22 May 2018 00 UTC ECMWF IFS-FVM 1484 VT: Friday 25 May 2018 12 UTC, Surface Total Precipitation (mm/day)
L WOW MW 10W 100W _S0W 6W W 20 OF 20 AE G0E SVE 0 0E MOE 10

“% v, \\&\\
S

7
25
4

XZ
Z
2%

2
25

Dynamical core time-to-solution for DCMIP2016
baroclinic wave with TCo1279 / 01280 (9km)
grid and L137 on 350 nodes (12800 cores) of
ECMWF’s former Cray XC40

=%
=
7%
2,
Y

25
S

7
[
‘«vAvIl"

ANANY
AV,
N
5

v
<vAVAV‘(‘ %

25525

AN,

E

o

g

%

4

A
P i

oebedd

X

%)

v

V)

vy

5

'ANAW,
s

i,
A,

SRL
%‘
D
)
%)
K
1
A
A
%)
Yl
X
o
\ A

SANAN,

=

Y
)

024

T,
SIS
=

N
>

(NANANAN)

AN)
Agm
%
SRR
2
£
%
Y
)
%
o

TANAN)
KF
2
2
%%
‘54;
i
o
4
&
\‘Aﬁv‘VAﬂﬁ

ANAN

e,
S5
~

Q2

va

e
&

2
N

2
X

o
S

KR

NN NEORRERE

RO KI5
IR

\Vavava AV AVAVAYA G A s

SR |~ - FVM e

&

oW WOW W oW BIW 60w W 7W OF 2E 40F 60E AE W0 TI0E W0E 160E

Snapshot total precip at 84h

4@ UIFCW 2023
n . . Q)5 A UFS Collaboration Powered by EPIC
_w EC MWF \: " Ccenfngzm di Calcolo Scientifico n ﬂ J E mz[jr,’ch (@ eS|W0 Ce ‘}'

Swiss National Supercomputina Centre Platform for Advanced Scientific Computing Comeor o o w0

Seamless execution of structured-grid FVM with various GT4Py backends

° [gt:cpu_kfirst
Il gt:cpu_ifirst

_ 5] 4.95 B gt:gpu The single model domain/user interface in Python with
) 4.51 B cuda embedded GT4Py for stencil computations seamlessly
g . [dace:gpu drives various backends by a simple switch, e.g.,:
]
£ & . C++ CPU where array layout is (I, J, K)
g 3 < gt:cpu_kfirst: C++ CPU where array layout is (K, |, J)
2 s gt:gpu: Gridtools CUDA C++
s 5 % cuda: native CUDA C++
;i <> : GPU backend leveraging the Data-Centric
o Parallel Programming Framework (DaCe, Ben-Hun et al.

1 0.69 0.70 0.71 2019, 2022). See https://github.com/spcl/dace .

One single user / domain interface <= multiple targeted backends

—e

4® UIFcW 2023 .

4 L — e . M)5 AUFSColl
_c ECMWF \"‘ gnﬁgzmu Galcolo Scientifico n ﬂ J E mzurICh ((;: eS IWG Ce s

I Supercomputina Centre Platform for Advanced Scientific Computing

https://github.com/spcl/dace

80°

60°

o

40°

20°

80°

60°

o

40°

20°

80°

60°

40°

20°

45°

45°

45°

Validating the GT4Py based dynamical core against references models

1028
1012

p Ziﬁ Spectral-transform IFS (ECMWF operational dynamical core) on

964 octahedral grid
948

932
90° 135° 180° 225°
1028

1012

996
p 9s0 FVM original Fortran code on octahedral grid (runs on CPUs only)

964
948

932
90° 135° 180° 225°
1028

1012

996
p ss0 FVM implemented entirely in Python with GT4Py Version 1 on regular

964 lat-lon grid (runs with various backends on CPUs and GPUs)
948

932
90° 135° 180° 225°
Shown is pressure on lowest level (hPa) at)
day 10 of DCMIP2016 baroclinic wave 7‘{.
A@® UIFCW 2023
o & cCscCs " T - o . Q5 AR Coabmaion ovsrea by £
S ECMWF @ o, MBAC ETHZirich Cesiwace

Reduced precision

80°N - 1.0
60°N 0.9
As with the original Fortran FVM code, we can 0.8
run the GT4Py based FVM with either 64-bit 40N "
or 32-bit precision. 20°N
0.6
80°N 0.5
Results for DCMIP2016 moist baroclinic wave with .
dynamical core coupled to ECMWF cloud scheme. *°™ 04
Shown are cloud fraction at about 2 km above the ., 0.3
surface (shading) and surface pressure (contour ; 02
levels with 10 hPa interval) at day 10. 20°N (€) Ax — 100 km (32-bit) > (d) Ax = 12 km (32-bit
45°E 90°E 135°E 180°E 45°E 90°E 135°E 180°E 01
7°2? (a) 64-b (b) 32-b
n 2.12 a -bit -bit
2 2.01 2.00 :
2
(7]
w16 [CPU k-first
-g] 114 1.22 =1 CPU i-first
5 1.2 ' EEN CUDA
30_8 == DaCe (GPU)
% 0.4 0.46 0.44] 0.44 0.39 Runtime measures on CSCS Piz Daint supercomputer
2 show increased computational performance with 32-bit
0.0 precision. Expected speed-up from 64-bit to 32-bit on .
CPUs, but very little improvement with GPUs here. — i_.
4@ UIFCW 2023
n “ CSCS] 'y . . fi\));‘ A UFS Collaboration Powered by EPIC
_w ECMWF \““ Centro Svizzero di Calcolo Scientifico n ﬂ J E mzur, Ch @ eSquce

Swiss National Sunercomputing Centre Platform for Advanced Scientific Computing

Distributed model

Ax=13.9km Ax=6.9 km AX = 6.9 km Ax=3.5 km Ax=3.5 km Ax=1.7 km
Tl AY=139km Ay=139km Ay=69km Ay =6.9 km Ay = 3.5 km Ay = 3.5 km
A .

B 2.5 2.31

Q

m
N
o

= CPU k-first
@ DaCe (GPU)

Runtime per ti
=
o (6]

o
6]

©
o

64 128 256 512 1024 2048
Nodes (x12 OpenMP threads, x1 GPU)

* Weak scaling of structured-grid FVM nearly-global configuration (latitude +-80deg) coupled to IFS cloud scheme.

* Here we test scaling across the CPU or the GPU partitions of CSCS’ Piz Daint supercomputer.

+ Halo exchanges based on GHEX -- Generic Exascale-ready Library for Halo-Exchange Operations — with Python
bindings. GHEX is developed at CSCS and supported by PRACE - Partnership for Advanced Computing in Europe.

e
- <o, cscs o . 48 urFew 2023 *
-y EC MWF A S “ Centro Svizzero di Calcolo Scientifico n e | - m ZU r i C h @: QSMIWCICQ -

N Swiss National Supercomputing Centre Platform for Advanced Scientific Computing

GT4Py for ECMWEF parametrizations and TL/AD model code

(a) CLOUDSC (b) CLOUDSC2: Non-linear (c) CLOUDSC2: Symmetry test
600 56508 300 1500
1323.20
4801 240 287 1200-
' 941.76 All computations performed
S | J | p p
=360 180 900 on CSC$ Piz Daint (CPU or
£ GPU partitions)
§24o- 1201 111.40 600
o
120 60 A 300+
0. 0. e B 0.
EEE FORTRAN: OpenMP (CPU) [FORTRAN: Loki (GPU) EEE GT4Py: CPU k-first
] FORTRAN: OpenACC (GPU) BB C: CUDA I GT4Py: DaCe (GPU)

* In the PASC funded KILOS project at ETH Zurich, we have been exploring the porting of IFS physical

parametrizations to Python with GT4Py. Performance comparisons for ECMWF’s prognostic cloud scheme
CLOUDSC (a).

« CLOUDSC?2 is the simplified cloud scheme with tangent-linear (TL) and adjoint (AD) model used in 4DVAR
assimilation. Timings for running the TL/AD symmetry test on CPUs and for the first time on GPUs is shown
n (c). Study is currently extended and prepared for publication (Ubbiali et al. in prep. 2023).

LR }

1
A@® UIFCW 2023
n [m— . LS A UFS Collaboration Powered by EPIC
s ECMWF “:‘ Csc S”.“: e [B ol ETH:zurich Cesiwace =

Platform for Advanced Scientific Computing

Upcoming: FVM implementation based on the declarative GT4Py

¢
4%,

Python embedded GT4Py Field Operator
example for simple Upwind scheme:

@field _operator
def advection_scheme_upwind(LK o \
KEKIARRRS,
. Fi RIS SRS V
rho: Field[[Vertex], float], ,ﬁ»’f»‘ﬁﬂﬁhiﬁﬁha‘s‘ %‘sﬁmﬂ’%‘: KEK! EP‘AV)
oL O avavy SISSESEREKTS Do
dt: float A OO IS I IS SRS
- ’ OO Pavay, AVAYA GV SO S0 SO 00
RO Vv A YAVAVAVAVAY'S Ly s A o s e s s s O 0
. . o YTV AVAVAVAVAVAVAVAIA L s o S a5 o 0 0 i
vel: tuple[Field[[Vertex], float], Field[[Vertex], float]], ‘Q‘;%’ﬁ%VJ¢X§VA¢1%A$'%%$¥$%£§’@E%Q
Oy e e e SRS RS
vol: Field[[Vertex], float], Qég«égﬁgf;,‘ f?k&f#i%l#gg%ﬁﬁ:i:‘:%%
AV S AVAVAVAVAVAVAY S VAT 75 TSI
dual face orientation: Field[[Vertex, V2EDim], float], :\S};&gﬁgﬁ;%iéf;i;i;‘;%;ﬁi{g%%%ﬁ}%'
- - A VA L S STAKL 0
i ' R SRR A A AT I
dual_face_normal: tuple[Field[[Edge], float], Field[[Edge], float]l], “\\V1‘Xx&«%v%x%VAVAVv'%‘z¢$X4)4¢14#’17g;‘ii’li),1(?‘"
mesh.pole_edge_mask NRRSRERSRELER A A S :,«gj#g’¢¢14g5;%i;;gﬁ
dual face length: Field[[Edge], float] S RS RSREIEI AR A SIS ST
— — ’ mesh.dual_face_orientation NRRERERSIEIEE 5255475 "4,4@,;4';/,/
2 = 4 NSRS ISS2SZS A 55T 7587585759054
mesh.dual_face_normal_weighted_x, NSRS IRA A ALK 2
=] o o 2

mesh.dual_face_normal_weighted_y,

) -> Field[[Vertex], float]:
flux = upwind flux(rho, vel, dual_face normal, dual_ face length)

return rho - (dt / vol) * neighbor_sum(

flux (V2E)

* dual_face_orientation, axis=V2EDim)
uredGrid

atlasdpy

StructuredGrid("H18")

ﬁhree main operator concepts: Tr——
| AtlasMesh.generate(grid)

function inliner

@program: Sequence of (stateful) operator calls transforming the input
17

args and writing back the return value to a specified output field
(local) map fusion
@field_operator: covering all common patterns of finite-volume stencils ! .
(- i i global temporary extraction
with multiple field operations !
common subexpression elimination
|

function inliner

@scan_operator: expressing computations with sequential
dependencies such as in direct implicit schemes and physical

parametrizations

7—.

Goal for 2024: Optimized declarative GT4Py-based global non-hydrostatic dynamical core in GPU distributed configuration
4@ UIFCW 2023

M > ‘ CSCS ﬂ Tl . M /‘”;“ A UFS Collaboration Powered by EPIC
_w EC MWF \‘ ‘ Centro Svizzero di Calcolo Scientifico n J E mzur, Ch ‘(f\ es I WG C e
\‘ Swiss National Supercomputina Centre Platform for Advanced Scientific Computing o ok B LG O WEAER 1 LT S

Thank you for listening!

—e

_
- 4® UIFCW 2023 *

> " " . M)5~ AUFS Collaboration Powered by EPIC
_c EC MWF \‘:‘ cnf) Sv‘izzemsdi Calcolo Scientifico n ﬂ J E m Z U r I C h ((‘: e Slwace ‘)

Ce
Swiss National Supercomou tina Centre Platform for Advanced Scientific Computing

