JEDI-based data assimilation for the UFS marine components

Travis Sluka (<u>tsluka@ucar.edu</u>) SOCA (Sea-ice, Ocean, and Coupled Assimilation) Project Lead, JCSDA/UCAR

(With help from numerous JCSDA, NOAA, and NASA in-kinds)

Who is JCSDA?

Joint Center for Satellite Data Assimilation (JCSDA):

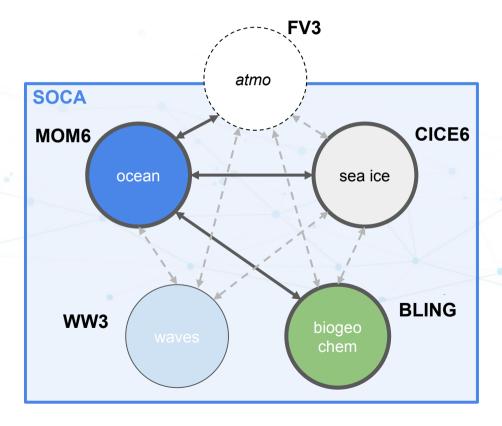
Interagency partnership dedicated to improving and accelerating use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems

What is SOCA: Sea-ice, Ocean, and Coupled Assimilation

Overall Goals:

- **1. Provide a "menu of marine DA options" based on JEDI** for operational DA implementation at NOAA / NASA, and use by the community, focusing on the marine UFS components.
- 2. Consolidate DA development efforts and code sharing share components across models (i.e. steal from the atmosphere people!)

3. Accelerate marine DA R2O and innovation


Advance "coupled assimilation" methods. Engage community development

What is SOCA: Sea-ice, Ocean, and Coupled Assimilation

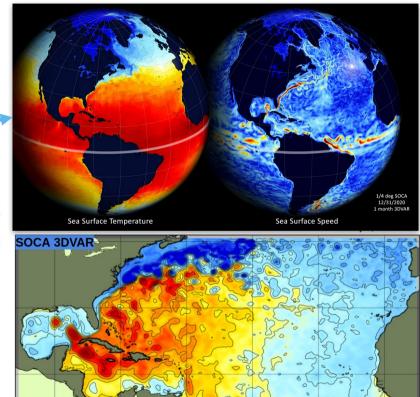
The components of SOCA

we are developing data assimilation for:

- ocean (MOM6)
- sea ice (CICE6)
- ocean biogeochemistry (BLING)
- air-sea interactions
- waves (Wavewatch3) (insufficient resources to focus on waves at this time, any volunteers??)

SOCA: targets for NOAA/NASA

Global DA


1/4 degree ocean/ice initialization

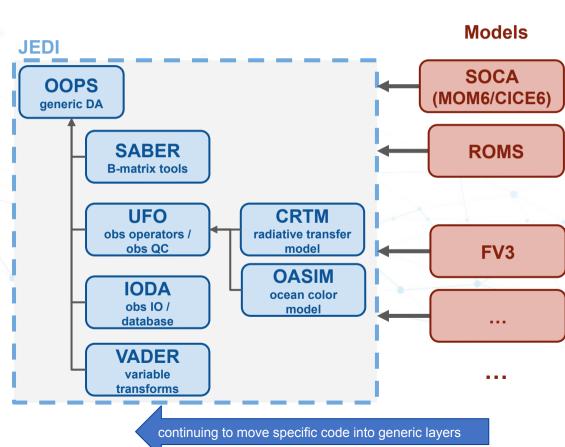
- NOAA NG-GODAS
 (40 year 3DVAR reanalysis on AWS)
- NOAA GFSv17 / GEFSv13
 (initialized using Hybrid LETKF-EnVAR)
 - NASA GEOS

In development for next GEOS system

Regional DA

NOAA 1/12 deg HAT10 regional
 with eventual benefits for HAFS initialization

SOCA: developing a "menu" of ocean/ice DA options

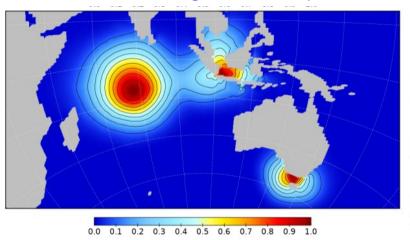

- 3DVAR
- 3DVAR-FGAT
- LETKF
- Hybrid LETKF-EnVAR 🔶 (target for NOAA operations)
- Hybrid EDA-EnVAR
- 4DLETKF / 4DEnVAR
- SOCA/UFS supported in JCSDA Skylab
- 4DVAR
- coupled multi-component covariance
- future JEDI methods (e.g. particle filter)

in progress

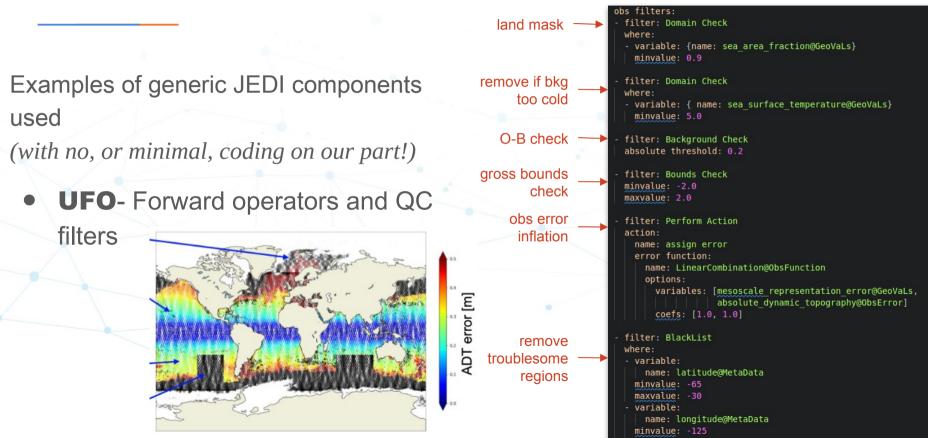
SOCA: Built on JEDI

JEDI: Joint Effort for Data assimilation Integration

- A model and component agnostic toolkit
- The ocean DA community is small, any common JEDI parts we use that were developed by other groups (i.e. atmosphere DA) is a win!
- A common DA system for all UFS components will accelerate coupled DA science



JEDI: example of common components used by SOCA

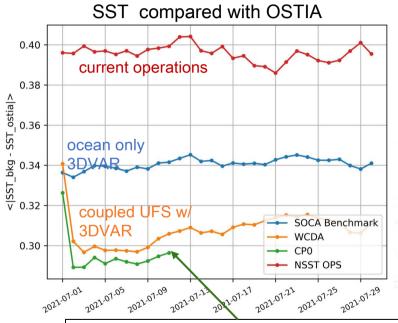

Examples of generic JEDI components used (with no, or minimal, coding on our part!)

 SABER - static B model.
 Able to simulate a diffusion operator (normally ocean specific, and difficult to implement correctly), but faster!

SABER - emulating a diffusion operator

JEDI: example of common components used by SOCA

SOCA: Highlight on adoption at NOAA/EMC


NOAA/EMC using SOCA for GFSv17/GEFSv13

- ocean/ice DA is SOCA Hybrid LETKF-EnVAR
- atmo DA is existing GSI (i.e. not JEDI)

The current weakly coupled EMC testbed

results so far are very encouraging

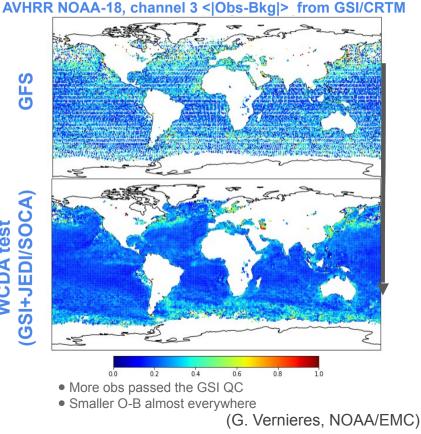
- Foundation temperature is increasingly better
- GSI's AVHRR radiance O-B improves when SST foundation improves
- Ocean current slightly better defined

Hybrid EnVAR w/ static ens: Status as of 07-11-2023. Hybrid EnVAR with 30 offline members

(G. Vernieres, NOAA/EMC)

SOCA: Highlight on adoption at NOAA/EMC

NCDA

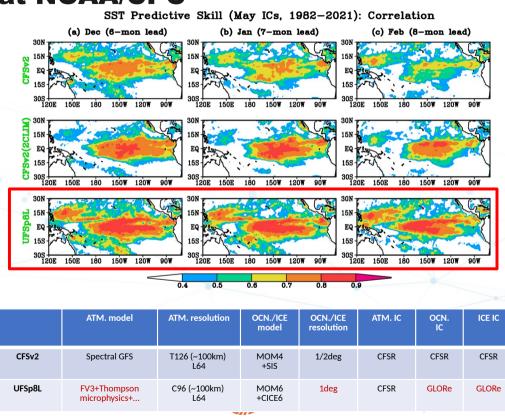

NOAA/EMC using SOCA for GFSv17/GEFSv1

- ocean/ice DA is SOCA Hybrid LETKF-EnVAR
- atmo DA is existing GSI (i.e. not JEDI)

The current weakly coupled EMC testbed

results so far are very encouraging

- Foundation temperature is increasingly better
- GSI's AVHRR radiance O-B improves when SST foundation improves
- Ocean current slightly better defined



SOCA: Highlight on adoption at NOAA/CPC

NOAA/CPC performing experiments with UFSp8

- ENSO hindcast experiments with UFSp8
- initialized with SOCA ocean/ice DA (called GLORe here)

The UFSp8 initialized with GLORe has better ENSO forecast than the current operational system (CFSv2)

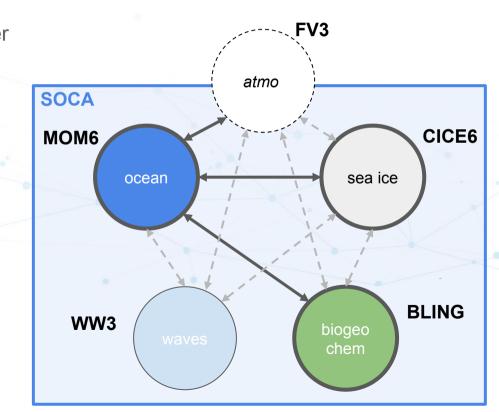
(J. Zhu, NOAA/CPC)

SOCA: The future: coupled DA!

By having all earth system component DA under JEDI, we can make progress on coupled DA. **Plan to focus heavily on this in**

2023/2024

2023: Coupled hofx


(surface sensitive radiances)

- **CRTM** infrared (AVHRR), microwave (GMI),

2024: Coupled covariances

(observation impacts across components)

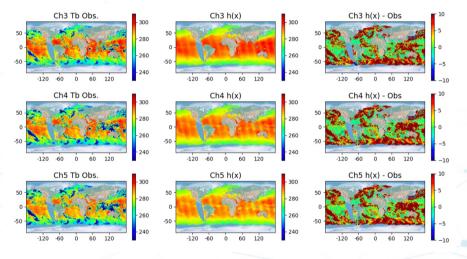
- via explicit balances (e.g. sea-ice/SST)
- via ensemble (LETKF/EnVAR)

SOCA: The future: coupled DA!

By having all earth system component DA under JEDI, we can make progress on coupled DA. **Plan to focus heavily on this in** 2023/2024

2023: Coupled hofx

(surface sensitive radiances)


- CRTM infrared (AVHRR), microwave (GMI),

2024: Coupled covariances

(observation impacts across components)

- via explicit balances (e.g. sea-ice/SST)
- via ensemble (LETKF/EnVAR)

CRTM: SST sensitive IR channels

AVHRR METOP-A (Dec 15, 2020), 24 hour window, GEOS (C360 atmosphere, ¼ degree ocean),

(H. Ebrahimi)

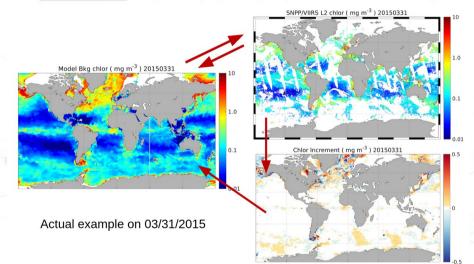
SOCA: The future: coupled DA!

OASIM: Ocean Color DA

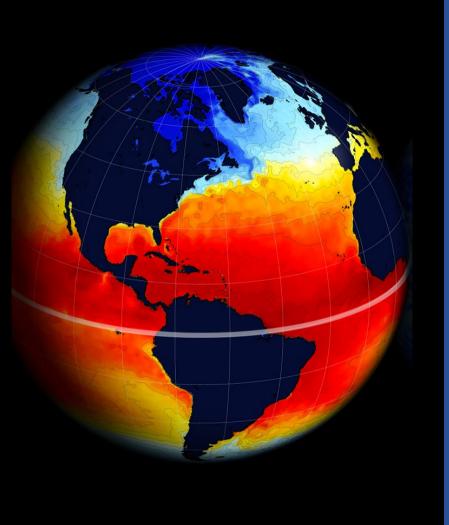
By having all earth system component DA under JEDI, we can make progress on coupled DA. **Plan to focus heavily on this in** 2023/2024

2023: Coupled hofx

(surface sensitive radiances)


- CRTM infrared (AVHRR), microwave (GMI),
- • OASIM ocean color (PACE/VIIRS/MODIS)

2024: Coupled covariances


(observation impacts across components)

- via explicit balances (e.g. sea-ice/SST)
- via ensemble (LETKF/EnVAR)

3DVARiational daily chlorophyll analysis (01/01/2015-03/31/2015)

(H. Ebrahimi, X. Liu NOAA/EMC)

JEDI-based data assimilation for the UFS marine components

Travis Sluka (<u>tsluka@ucar.edu</u>) SOCA Project Lead (Sea-ice, Ocean, and Coupled Assimilation) JCSDA/UCAR

SOCA: https://github.com/jcsda/soca

