Better Compression for UFS
with Support from the
NetCDF Community

Unifying Innovations in Forecasting Capabilities Workshop, July, 2023

Edward Hartnett, CIRES/NOAA

This research was supported by NOAA cooperative agreements NA170AR4320101 and NA220OAR4320151.

*—

y o«
A UIFCW 2023

" A UFS Collaboration Powered by

New Compression
Features are
Available in NetCDF

Three new compression features are now
available in netCDF.
e Parallel I/O + compression.

e /standard - new lossless compression.
e Quantize - enables lossy compression.

Using the new features will result in faster
|/0O, and smaller data files.

Use compression with parallel I/O
(since netcdf-c-4.7.4).

Use Zstandard compression instead of
zlib, for better compression and faster
1/0.

Use the new quantize feature with
floating point data to enable lossy
compression.

Using both zstandard and quantize
may result in 5x improvement in
compression and 1/O.

Data are backward compatible with
existing codes (once they are re-linked
with new version of netCDF).

o

/ \
;\L UIFCW 2023
) i

Collaboration Powered by £

A History of Community Collaboration

Date

2016

2019

2019

2020

2021

2022

2023

Feature

NCO tools support new
compression, bit-grooming.

Bit-shaving in GFS
atmospheric history data.

Creation of CCR project.

NetCDF parallel I/O writing
using compression.

Test with UFS; Add

quantize/zstandard support.

netcdf-c-4.9.0.

netcdf-c-4.9.2/
netcdf-fortran-4.6.1.

Impact

New compression filters in post-processed data, demonstrates
value of bit-grooming. (Geosci. Model Dev)

Reduces size of ATM history file from 36 GB to 6 GB.

Allows testing of new compression filters in netCDF. (AMS)

Order of magnitude improvement in write time for GFSv16. (WMO

WGNE Blue Book)

Demonstrated value to NOAA and the wider community. (AGU)

Quantization/zstandard available to all. (EGU)

Increased ease-of-use for Fortran users.

e

H o

4@ UIFcwW 2023

' A UFS Collaboration Powered by

Collaborators

U. of California, Irvine
NOAA

U. of California, Irvine, Unidata/UCAR, NOAA

NOAA, Unidata/lUCAR
NOAA, Unidata/UCAR, NetCDF power users.

NOAA, U. of California, Irvine, Unidata/lUCAR

NOAA, Unidata/UCAR,
U. of California, Irvine,

https://www.researchgate.net/publication/301575383_Bit_Grooming_Statistically_accurate_precision-preserving_quantization_with_compression_evaluated_in_the_netCDF_Operators_NCO_v448
https://www.researchgate.net/publication/347726899_Poster_-_ADDITIONAL_NETCDF_COMPRESSION_OPTIONS_WITH_THE_COMMUNITY_CODEC_REPOSITORY
https://www.researchgate.net/publication/364382344_Computational_performance_improvements_in_GFSv16
https://www.researchgate.net/publication/364382344_Computational_performance_improvements_in_GFSv16
https://www.researchgate.net/publication/357001251_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files
https://www.researchgate.net/publication/360814804_Adding_Quantization_to_the_NetCDF_C_and_Fortran_Libraries_to_Enable_Lossy_Compression

Parallel 1O with
Compression

[
C768L127 Nemsio Netcdf Netcdf Netcdf Netcdf Lossy | Netcdf

[CEHEICEN Loss
No Lossless Loss:! Lossy(deflat its= Y
fest y y(nbits=14),para (deflate=1,

compressi compressio | (deflate=1,n | (deflate =1, e=1,nbit=14) | Ilel writing, g
SR on n bit=0) nbit=20) default nbits=14),pa

Added to netcdf-c-4.7.4 to support Lh"y'k““g
GFS 16- A3D file : : 23.6GB 13.5GB : : NNMWM
All compression features now work G ey (TB) S METB) - (2. STBY S 1-3T)E S K(1:8TB) | (1-8TE)
with parallel 1/0.

Special thanks to Unidata/UCAR for

quickly doing a release in support of

Write Time 960s 680s

e GFSv16 could NOT be implemented without this Py ﬁ

G FS' 16 feature! %;@;5}

e Collaborated with Unidata and PSL, testing, release

and deployment in operations in under two months e = Unidata
Computational performance improvements in GFSv16, Jun Wang, Jeffrey Whitaker,
Edward Hartnett, James Abeles, Gerhard Theurich, Wen Meng, Cory
Martin,Jose-Henrique Alves, Fanglin Yang, Arun Chawla .
- f’
48 uIFcw 2023

W))5> AUFS Collaboration Powered by EPIC

Zstandard is Faster
than Zlib

e Zstandard islossless compression.

e Zstandard library is available on all
platforms (Unix/Windows/Mac).

e Significantly faster and more compressive
than zlib.

e Provides greater control (than zlib) of
speed/compression trade-off.

e \eryfast decompression.

Time (s)

UFS Model Write Time: ATM File

B ZLB W ZLIB_NG SziP W ZSTD

15

10

C48 C96 C192 C384 Cs PAR

UFS Regression Test

Quantization and Next-Generation Zlib Compression for Fully
Backward-Compatible, Faster, and More Effective Data Compression in
NetCDF Files - Edward Hartnett, Charles S. Zender, Ward Fisher, Dennis
Heimbigner, Hang Lei, Brian Curtis, Kyle Gerheiser (see also extended abstract)

o

<\
"L UIFCW 2023

)), A UFS Collaboration Powered by EPIC

https://www.researchgate.net/publication/357000984_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files
https://www.researchgate.net/publication/357000984_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files
https://www.researchgate.net/publication/357000984_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files
https://www.researchgate.net/publication/357001251_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files

New Zstandard Parameter in nf90 _def var

nf90_def_var(ncid, VAR1_NAME, NF90_FLOAT, dimids, varidl, &
zstandard_level = 4, shuffle = shuffle)

Do not try to use both zstandard_level and deflate_level.

v
-
‘(L UIFCW 2023

)]' A UFS Collaboration Powered by EPIC

Quantization Enables
Lossy Compression

e Will only reduce data size if zlib/zstandard

compression is turned on.

Only for NC_FLOAT, NC_DOUBLE types.

Fill values are not quantized.

Quantize works and is tested with parallel I/O.

Quantized data are fully backward-compatible, and

can be read correctly by all versions of netCDF and

netCDF-Java.

e Anattribute is added to the data variable, recording
the algorithm and the number of significant digits.

Sign Exponent Fraction (significand) Decimal Notes

0 10000000 100100100001 11111011011 3.14159265 Exact

0 10000000 10010010000111111011011 3.14159265 NSD =38
0 10000000 10010010000111111011010 3.14159262 NSD=7
0 10000000 10010010000111111011000 3.14159203 NSD=6
0 10000000 100100100001 11111000000 3.14158630 NSD =35
0 10000000 10010010000111100000000 3.14154053 NSD =4
0 10000000 10010010000000000000000 3.14062500 NSD =3
0 10000000 10010010000000000000000 3.14062500 NSD =2
0 10000000 10010000000000000000000 3.12500000 NSD =1

Figure 1: The value of Pi expressed as a 32-bit floating point number, with different levels of
quantization applied, from Number of Significant Digits (NSD) equal to 8 (no quantization), to 1
(maximum quantization). The least significant bits of the significand are replaced with zeros, to

the extent possible, while preserving the desired number of significant digits. In this example the

Bit Grooming quantization algorithm is used.

Hartnett, Zender, EGU22-13259, Adding Quantization to the NetCDF C and Fortran
Libraries to Enable Lossy Compression

it
‘”‘ UIFCW 2023

W))5> AUFS Collaboration Powered by EPIC

o

.

https://www.researchgate.net/publication/360815823_EGU22-13259_Adding_Quantization_to_the_NetCDF_C_and_Fortran_Libraries_to_Enable_Lossy_Compression_1
https://www.researchgate.net/publication/360815823_EGU22-13259_Adding_Quantization_to_the_NetCDF_C_and_Fortran_Libraries_to_Enable_Lossy_Compression_1

Quantize Algorithms

BitGroom Granular BitRound BitRound
Determines rounding Determines rounding bitmask Allows user to specify
bitmask for all data which for each value which preserves number of bits to be
preserves NSD (decimal NSD (decimal digits). IEEE retained. IEEE rounding.
digits). Alternate values have rounding. Slightly slower, more Allows user to specify bits
extra bits set to 0/1. Fast, aggressive algorithm. instead of decimal digits.

conservative algorithm.

v
Most users will want Granular BitRound. 7 \—.
4@ UIFCW 2023

‘)]‘y— A UFS Collaboration Powered by EPIC

New Quantize Parameters in nf90_def var

nf90_def_var(ncid, VAR1_NAME, NF90_FLOAT, dimids, varidl, &
deflate_level = DEFLATE_LEVEL, &

quantize_mode = nf90_quantize_bitgroom, nsd = 3)

1
e
A(® UIFCW 2023

)}7 A UFS Collaboration Powered by EPIC

Use Zstandard + Quantize
for Best Results

L I & Lossy Contributions to Compression Ratio

mmm Zstandard (level = 3)
+ Shuffle

B + BitGroom (NSD)

B + GranularBR (NSD)

N + BitRound (NSB)

~

o

e Zstandard can be tried quickly, no change in
data results.

e Quantization will change output and require
decisions about NSD.

e Downstream code does not need to change for
either compression filter or use of
guantization.

w

Final Compression Ratio
w Iy

N

NSD=7, NSB=23 NSD=4, NSB=12 NSD=3, NSB=9 NSD=2, NSB=6

P Downstream netCDF inSta”S mUSt be updated Number of Significant Digits or Bits Retained

to reac.l zstandard compressed data. Charlie Zender - Lossy compression: The netCDF
e Quantized data can be read on all downstream implementation and towards encoding precision

installations.

o

<\
4® UIFCW 2023

)], A UFS Collaboration Powered by EPIC

1 netcdf-c and netcdf-fortran must be
I nSta "l'l ng N etC D F upgraded to use the new features.
WIth Com prQSS|On Once netCDF is correctly installed, and
Featu res programs are re-built with the new version

of netCDF, no code changes are required in
reading code for zstandard or quantize.

Some build settings are required to
get the netCDF C and Fortran to
work with zstandard.

Only the nf90_def_var() call in the writing
program needs to change.

Quantization requires no special

settings.

A(: \
@\9 UIFCW 2023

A UFS Collaboration Powered by EPIC

Installing NetCDF - The C Library

netcdf-c-4.9.2

Use -enable-parallel-tests to turn on parallel 1/O tests with mpiexec.

Use -with-plugin-dir to get zstandard HDF5 plugin correctly installed.

For FISMA disable DAP, byterange, and ncZarr. (Though these are great features!)

t CC=mpicc
t CPPFLAGS=-I/usr/local/hdf5-1.14.1_mpich/include
t LDFLAGS=-L/usr/local/hdf5-1.14.1_mpich/1lib

figure --enable-parallel-tests --with-plugin-dir --disable-dap --disable-byterange --disable-nczarr —-prefix=.
-j check

-j install e
-
“L UIFCW 2023

)}' A UFS Collaboration Powered by EPIC

Installing NetCDF - The Fortran Libraries

e netcdf-fortran-4.6.1
e Mustsetenvvar HDF5 PLUGIN _PATH

export HDF5_PLUGIN_PATH=/usr/local/hdf5/1ib/plugin

export FC=mpifort

export FCFLAGS=-I/usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich/include

export CPPFLAGS=-I/usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich/include

export LDFLAGS=-L/usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich/1lib

./configure --prefix=/usr/local/netcdf-fortran-4.6.1_mpich --enable-parallel-tests
make -j check

make -j install

e
-
“L UIFCW 2023

)}y A UFS Collaboration Powered by EPIC

NetCDF C Configuration Summary

NetCDF Version:
Dispatch Version:
Configured On:

Host System:

Build Directory:
Install Prefix:

Plugin Install Prefix:

Compiling Options
C Compller
CFLAGS

CPPFLAGS:
LDFLAGS:
AM_CFLAGS:
AM_CPPFLAGS:
AM_LDFLAGS:
Shared Library:
Static Library:
Extra libraries:
XML Parser:

Features
Benchmarks :

NetCDF-2 API:

HDF4 Support:

HDF5 Support:
NetCDF-4 API:

CDF5 Support:

NC-4 Parallel Support:
PnetCDF Support:

DAP2 Support:
DAP4 Support:
Byte-Range Support:

S3 Support:

NCZarr Support:
NCZarr Zip Support:

Diskless Support:
MMap Support:

JNA Support:

ERANGE Fill Support:

Relaxed Boundary Check:

Multi-Filter Support:
Quantization:
Logging:

SZIP Write Support:
Standard Filters:
ZSTD SuRport:

Parallel Filters:

%.9.2
Thu Jun 1 12:06

x86_64-pc-linux-g

:34 MDT 2023
nu

/home/ed/Downloads/netcdf-c

/usr/local/netcdf-c
/usr/local/hde/llb/

/usr/bin/mpicc

9.2
-4.9.2 hdfs 1.14.1_mpich
plugin

-fno-strict-aliasing
-I/usr/local/hdf5-1.14.1_mpich/include
-L/usr/local/hdf5-1.14.1_mpich/1lib

yes

—lhdf%.hl -1hdf5 -1Im -1z -1dl -1lzstd -1xml2

1ibxml2

no
yes
no

yes
yes
yes
yes
no

no
no
no

no

no
no

yes
no
no
no
yes

yes
yes
no

no
deflate bz2 zstd
yes
yes

el
t(L UIFCW 2023

)' A UFS Collaboration Powered by EPIC

-
-

NetCDF Fortran Configuration Summary

Library Version:
Configured On:
Host System:
Build Directory:
Install Prefix:

Compiling Options
Fortran Compiler:
FFLAGS:

LDFLAGS:

C Compiler:
CPPFLAGS:

CFLAGS:

Shared Library:
Static Library:
Extra libraries:

Features

Fo3:

Dap Support:
Logging Support:
NetCDF-2 API:
NetCDF-4 API:
CDF5 Sugport
Paralle

NetCDF4 Parallel IO:
PnetCDF Parallel I0:

SZIP Write Support:
Zstandard Support:
Quantize:

4.6.1

Thu Jun 1 12:42:55 MDT 2023
x86_64-pc- 1inix-
/home/ed/Downloads/netcdf-fortran-4.6.1
/usr/local/netcdf-fortran-4.6.1_mpich

/usrébln/mplfort
—L/usr/local/netcdf c-4.9.2_hdf5-1.14.1_mpich/1lib

—I/usr/local/netcdf—c—4.9.2_hdf5—1.14.1_mpich/inc1ude
-g -02 -DLONGLONG_IS_LONG
yes

yes
-1lnetcdf -1d1 -1m

yes
no
yes
yes
yes
yes
yes
yes
no
no
yes (HDF5_PLUGIN_PATH: /usr/local/hdf5/1ib/plugin)
yes

C Turn on zstandard compression if available, zlib otherwise.
#ifdef ENABLE_ZSTD
retval = nf_def_var_zstandard(ncid, varid(x), ZSTD_LEVEL)
if (retval .ne. nf_noerr) then
if (retval .eq. nf_enofilter) then
print *, 'Zstandard filter not found.'
print *, 'Set HDF5_PLUGIN_PATH and try again.'

All- netCDF :i:gi;int *: nf_strerr(_)r(retv;l)
compression work

- - retval = nf_def_var_deflate(ncid, varid(x), @, 1, 1)
Is fully unlt tested. e if (retval .ne. nf_noerr) stop 6

end do

stop 5
endif
#else

C Write some data (which automatically calls nf_enddef).
start(1) =1
count(1) = DIM_LEN_5
retval = nf_put_vara_real(ncid, varid(1), start, count,

As with the rest of the netCDF code Se real_data) 0 stbr
base, the Compl’eSSIOn features are ?etvgi \:/anf;gﬁ;c_varz_gguble(ncid, varid(2), start, count,
fully documented and tested, for C, Pif (roouble-data)) top 8
F77,and F90. R
eck it out.

retval = check_file(ncid, var_name, var_type, dim_name)
if (retval .ne. @) stop 9

They would not have been accepted
otherwise.

o

<\
!‘L UIFCW 2023

)), A UFS Collaboration Powered by EPIC

