
Better Compression for UFS
with Support from the
NetCDF Community

Unifying Innovations in Forecasting Capabilities Workshop, July, 2023

Edward Hartnett, CIRES/NOAA

This research was supported by NOAA cooperative agreements NA17OAR4320101 and NA22OAR4320151.

New Compression
Features are
Available in NetCDF

Three new compression features are now
available in netCDF.

● Parallel I/O + compression.
● Zstandard - new lossless compression.
● Quantize - enables lossy compression.

Using the new features will result in faster
I/O, and smaller data files.

● Use compression with parallel I/O
(since netcdf-c-4.7.4).

● Use Zstandard compression instead of
zlib, for better compression and faster
I/O.

● Use the new quantize feature with
floating point data to enable lossy
compression.

● Using both zstandard and quantize
may result in 5x improvement in
compression and I/O.

● Data are backward compatible with
existing codes (once they are re-linked
with new version of netCDF).

Date Feature Impact Collaborators

2016 NCO tools support new
compression, bit-grooming.

New compression filters in post-processed data, demonstrates
value of bit-grooming. (Geosci. Model Dev)

U. of California, Irvine

2019 Bit-shaving in GFS
atmospheric history data.

Reduces size of ATM history file from 36 GB to 6 GB. NOAA

2019 Creation of CCR project. Allows testing of new compression filters in netCDF. (AMS) U. of California, Irvine, Unidata/UCAR, NOAA

2020 NetCDF parallel I/O writing
using compression.

Order of magnitude improvement in write time for GFSv16. (WMO
WGNE Blue Book)

NOAA, Unidata/UCAR

2021 Test with UFS; Add
quantize/zstandard support.

Demonstrated value to NOAA and the wider community. (AGU) NOAA, Unidata/UCAR, NetCDF power users.

2022 netcdf-c-4.9.0. Quantization/zstandard available to all. (EGU) NOAA, U. of California, Irvine, Unidata/UCAR

2023 netcdf-c-4.9.2/
netcdf-fortran-4.6.1.

Increased ease-of-use for Fortran users. NOAA, Unidata/UCAR,
U. of California, Irvine,

A History of Community Collaboration
A History of Community Collaboration

https://www.researchgate.net/publication/301575383_Bit_Grooming_Statistically_accurate_precision-preserving_quantization_with_compression_evaluated_in_the_netCDF_Operators_NCO_v448
https://www.researchgate.net/publication/347726899_Poster_-_ADDITIONAL_NETCDF_COMPRESSION_OPTIONS_WITH_THE_COMMUNITY_CODEC_REPOSITORY
https://www.researchgate.net/publication/364382344_Computational_performance_improvements_in_GFSv16
https://www.researchgate.net/publication/364382344_Computational_performance_improvements_in_GFSv16
https://www.researchgate.net/publication/357001251_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files
https://www.researchgate.net/publication/360814804_Adding_Quantization_to_the_NetCDF_C_and_Fortran_Libraries_to_Enable_Lossy_Compression

Parallel IO with
Compression

● Added to netcdf-c-4.7.4 to support
GFS 16.

● All compression features now work
with parallel I/O.

● Special thanks to Unidata/UCAR for
quickly doing a release in support of
GFS-16.

Computational performance improvements in GFSv16, Jun Wang, Jeffrey Whitaker,

Edward Hartnett, James Abeles, Gerhard Theurich, Wen Meng, Cory

Martin,Jose-Henrique Alves, Fanglin Yang, Arun Chawla

Zstandard is Faster
than Zlib

● Zstandard is lossless compression.
● Zstandard library is available on all

platforms (Unix/Windows/Mac).
● Significantly faster and more compressive

than zlib.
● Provides greater control (than zlib) of

speed/compression trade-off.
● Very fast decompression.

Quantization and Next-Generation Zlib Compression for Fully

Backward-Compatible, Faster, and More Effective Data Compression in

NetCDF Files - Edward Hartnett, Charles S. Zender, Ward Fisher, Dennis

Heimbigner, Hang Lei, Brian Curtis, Kyle Gerheiser (see also extended abstract)

https://www.researchgate.net/publication/357000984_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files
https://www.researchgate.net/publication/357000984_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files
https://www.researchgate.net/publication/357000984_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files
https://www.researchgate.net/publication/357001251_Quantization_and_Next-Generation_Zlib_Compression_for_Fully_Backward-Compatible_Faster_and_More_Effective_Data_Compression_in_NetCDF_Files

New Zstandard Parameter in nf90_def_var

 nf90_def_var(ncid, VAR1_NAME, NF90_FLOAT, dimids, varid1, &
 zstandard_level = 4, shuffle = shuffle)

Do not try to use both zstandard_level and deflate_level.

Quantization Enables
Lossy Compression

● Will only reduce data size if zlib/zstandard
compression is turned on.

● Only for NC_FLOAT, NC_DOUBLE types.
● Fill values are not quantized.
● Quantize works and is tested with parallel I/O.
● Quantized data are fully backward-compatible, and

can be read correctly by all versions of netCDF and
netCDF-Java.

● An attribute is added to the data variable, recording
the algorithm and the number of significant digits.

Hartnett, Zender, EGU22-13259, Adding Quantization to the NetCDF C and Fortran
Libraries to Enable Lossy Compression

https://www.researchgate.net/publication/360815823_EGU22-13259_Adding_Quantization_to_the_NetCDF_C_and_Fortran_Libraries_to_Enable_Lossy_Compression_1
https://www.researchgate.net/publication/360815823_EGU22-13259_Adding_Quantization_to_the_NetCDF_C_and_Fortran_Libraries_to_Enable_Lossy_Compression_1

Quantize Algorithms

BitGroom Granular BitRound BitRound

Determines rounding
bitmask for all data which
preserves NSD (decimal

digits). Alternate values have
extra bits set to 0/1. Fast,
conservative algorithm.

Determines rounding bitmask
for each value which preserves

NSD (decimal digits). IEEE
rounding. Slightly slower, more

aggressive algorithm.

Allows user to specify
number of bits to be

retained. IEEE rounding.
Allows user to specify bits
instead of decimal digits.

Most users will want Granular BitRound.

New Quantize Parameters in nf90_def_var

 nf90_def_var(ncid, VAR1_NAME, NF90_FLOAT, dimids, varid1, &
 deflate_level = DEFLATE_LEVEL, &
 quantize_mode = nf90_quantize_bitgroom, nsd = 3)

Use Zstandard + Quantize
for Best Results

● Zstandard can be tried quickly, no change in
data results.

● Quantization will change output and require
decisions about NSD.

● Downstream code does not need to change for
either compression filter or use of
quantization.

● Downstream netCDF installs must be updated
to read zstandard compressed data.

● Quantized data can be read on all downstream
installations.

Charlie Zender - Lossy compression: The netCDF
implementation and towards encoding precision

Installing NetCDF
with Compression
Features

Some build settings are required to
get the netCDF C and Fortran to
work with zstandard.

Quantization requires no special
settings.

netcdf-c and netcdf-fortran must be

upgraded to use the new features.

Once netCDF is correctly installed, and

programs are re-built with the new version

of netCDF, no code changes are required in

reading code for zstandard or quantize.

Only the nf90_def_var() call in the writing

program needs to change.

Installing NetCDF - The C Library
● netcdf-c-4.9.2

● Use –enable-parallel-tests to turn on parallel I/O tests with mpiexec.

● Use –with-plugin-dir to get zstandard HDF5 plugin correctly installed.

● For FISMA disable DAP, byterange, and ncZarr. (Though these are great features!)

export CC=mpicc
export CPPFLAGS=-I/usr/local/hdf5-1.14.1_mpich/include
export LDFLAGS=-L/usr/local/hdf5-1.14.1_mpich/lib
./configure --enable-parallel-tests --with-plugin-dir --disable-dap --disable-byterange --disable-nczarr –prefix=...
make -j check
make -j install

Installing NetCDF - The Fortran Libraries
● netcdf-fortran-4.6.1

● Must set env var HDF5_PLUGIN_PATH

export HDF5_PLUGIN_PATH=/usr/local/hdf5/lib/plugin
export FC=mpifort
export FCFLAGS=-I/usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich/include
export CPPFLAGS=-I/usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich/include
export LDFLAGS=-L/usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich/lib
./configure --prefix=/usr/local/netcdf-fortran-4.6.1_mpich --enable-parallel-tests
make -j check
make -j install

NetCDF C Configuration Summary
==============================

General

NetCDF Version: 4.9.2
Dispatch Version: 5
Configured On: Thu Jun 1 12:06:34 MDT 2023
Host System: x86_64-pc-linux-gnu
Build Directory: /home/ed/Downloads/netcdf-c-4.9.2
Install Prefix: /usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich
Plugin Install Prefix: /usr/local/hdf5/lib/plugin

Compiling Options

C Compiler: /usr/bin/mpicc
CFLAGS: -fno-strict-aliasing
CPPFLAGS: -I/usr/local/hdf5-1.14.1_mpich/include
LDFLAGS: -L/usr/local/hdf5-1.14.1_mpich/lib
AM_CFLAGS:
AM_CPPFLAGS:
AM_LDFLAGS:
Shared Library: yes
Static Library: yes
Extra libraries: -lhdf5_hl -lhdf5 -lm -lz -ldl -lzstd -lxml2
XML Parser: libxml2

Features

Benchmarks: no
NetCDF-2 API: yes
HDF4 Support: no
HDF5 Support: yes
NetCDF-4 API: yes
CDF5 Support: yes
NC-4 Parallel Support: yes
PnetCDF Support: no

DAP2 Support: no
DAP4 Support: no
Byte-Range Support: no

S3 Support: no

NCZarr Support: no
NCZarr Zip Support: no

Diskless Support: yes
MMap Support: no
JNA Support: no
ERANGE Fill Support: no
Relaxed Boundary Check: yes

Multi-Filter Support: yes
Quantization: yes
Logging: no
SZIP Write Support: no
Standard Filters: deflate bz2 zstd
ZSTD Support: yes
Parallel Filters: yes

NetCDF Fortran Configuration Summary
==============================

General

Library Version: 4.6.1
Configured On: Thu Jun 1 12:42:55 MDT 2023
Host System: x86_64-pc-linux-gnu
Build Directory: /home/ed/Downloads/netcdf-fortran-4.6.1
Install Prefix: /usr/local/netcdf-fortran-4.6.1_mpich

Compiling Options

Fortran Compiler: /usr/bin/mpifort
FFLAGS: -g -O2
LDFLAGS: -L/usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich/lib
C Compiler: gcc
CPPFLAGS: -I/usr/local/netcdf-c-4.9.2_hdf5-1.14.1_mpich/include
CFLAGS: -g -O2 -DLONGLONG_IS_LONG
Shared Library: yes
Static Library: yes
Extra libraries: -lnetcdf -ldl -lm

Features

F03: yes
Dap Support: no
Logging Support: yes
NetCDF-2 API: yes
NetCDF-4 API: yes
CDF5 Support: yes
Parallel IO: yes
NetCDF4 Parallel IO: yes
PnetCDF Parallel IO: no
SZIP Write Support: no
Zstandard Support: yes (HDF5_PLUGIN_PATH: /usr/local/hdf5/lib/plugin)
Quantize: yes

All netCDF
compression work
is fully unit tested.

As with the rest of the netCDF code
base, the compression features are
fully documented and tested, for C,
F77, and F90.

They would not have been accepted
otherwise.

C Turn on zstandard compression if available, zlib otherwise.
#ifdef ENABLE_ZSTD
 retval = nf_def_var_zstandard(ncid, varid(x), ZSTD_LEVEL)
 if (retval .ne. nf_noerr) then
 if (retval .eq. nf_enofilter) then
 print *, 'Zstandard filter not found.'
 print *, 'Set HDF5_PLUGIN_PATH and try again.'
 else
 print *, nf_strerror(retval)
 endif
 stop 5
 endif
#else
 retval = nf_def_var_deflate(ncid, varid(x), 0, 1, 1)
 if (retval .ne. nf_noerr) stop 6
#endif

 end do

C Write some data (which automatically calls nf_enddef).
 start(1) = 1
 count(1) = DIM_LEN_5
 retval = nf_put_vara_real(ncid, varid(1), start, count,
 $ real_data)
 if (retval .ne. 0) stop 7
 retval = nf_put_vara_double(ncid, varid(2), start, count,
 $ double_data)
 if (retval .ne. 0) stop 8

C Check it out.
 retval = check_file(ncid, var_name, var_type, dim_name)
 if (retval .ne. 0) stop 9

