Novel Grid Capabilities in GFDL's Dynamical Core FV3

Joseph Mouallem^{1,2}, Lucas Harris³, Rusty Bensor⁴

¹Cooperative Institute for Modeling the Earth System, Princeton University, Princeton, NJ, USA ²Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA

July 25, 2023

Novel Grid Capabilities in FV3

Multiple grid nesting

UIFCW 2023 A UFS Collaboration Powered by EPIC

Nesting in FV3:

C-SHiELD: C768n5: 13-2.5km Severe Weather Prediction

Grid nesting in FV3:

- To update nest BCs (1→ 4), <u>all variables</u> are linearly interpolated in space
- Nest BCs are also linearly extrapolated in time every acoustic timestep (n_split) then updated from the coarse grid every vertical remapping timestep (k_split)
- Each nested grid runs on a specific list of processors, allowing concurrent timestepping which eases the computational load of each grid which also has its own name list, thus, could be configured differently.
- Only the temperature and the three wind components are used for the twoway updates. Therefore, there is no violation of mass conservation during this process on the coarse grid.

Two way updates:

- For cell-mean scalars, the value in the shaded coarse-grid cell (heavy lines) is replaced by the area-weighted average of the values on the coinciding nested-grid cells (thin lines).
- The winds tangential to this coarse-grid cell (red arrows) are updated using the length-weighted average of coinciding nested-grid cell boundaries (yellow arrows). This conserves vorticity.

Note: Cubed-sphere grid cells are not squares. Could be applied to any non-orthogonal quadrilateral grid

Towards kilometer -scale and eddy -scale

Multiple same-level and telescoping nesting in GFDL's dynamical core (*Mouallem et al. 2022, GMD*) HSUP-funded project transferred to HAFS.

Laura at 1km taken from 13/4/1

precipitation 50/17/6

Global-nest moisture and rainfall at 13/4/1

Edges and corners

if ((je+1)==npy) then
 do i=is,ie+1
 vb(i,npy) = dt5*(vt(i-1,npy)+vt(i,npy)) ! corner values are incorrect
 enddo
endif

```
! East edge:
```

```
if ( (ie+1)==npx ) then
    do j=jsd,jed
        if ( uc(npx,j)*dt > 0. ) then
            ut(npx,j) = uc(npx,j) / sin_sg(npx-1,j,3)
        else
            ut(npx,j) = uc(npx,j) / sin_sg(npx,j,1)
        endif
enddo
```

enaa

endif

if (fill_c) call fill_corners(divg_d, npx, npy, FILL=XDir, BGRID=.true.)

- Continuous integration along great circle lines => No other edge/corner handling code is required!
- The halo remapping algorithm and Duo extension are directly implemented into tiles' halo update message passing calls.
- Minimize data movement on CPU/GPU hybrid systems
 => Stepping stone for future FV3 developments on GPUs

Challenges

Extend the non-staggered LMARS duo grid algorithm (Xi, 2020) to support all FV3 staggered/unstaggered variables

N-2 N-1

N+1

• Break down complex and optimized subroutines (such as d_sw) to apply flux averaging on different components used to assemble the time advanced quantities

PANEL 2

N-2 PANEL

SW Results

- Advection of a cosine bell (case1)
- Steady state geostrophic flow (case2)
- Rossby wave (case6)
- Colliding modons

Mouallem and Harris (under review)

K / EPIC

60°W

60[°]W

0°W

0°W

