
Unifying Workflows for
UFS Applications

Christina Holt, Fredrick Gabelmann,
Brian Weir, Venita Hagerty,

Emily Carpenter, Janet Derrico

Acknowledgements

Funding

UFS R2O
NOAA EMC, in kind

CIRES, in kind
NOAA GSL, in kind

GMU, in kind
EPIC Program

JTTI
SENA

Contributors Stakeholder Institutions

Benjamin Cash, GMU
Rahul Mahajan, NOAA EMC
Arun Chawla, NOAA EMC

*Fredrick Gabelmann, Element 84/EPIC
Julie Prestopnik, NCAR/DTC

Ryan Long, Redline/NOAA EMC
*Emily Carpenter, CIRES/NOAA GSL

*Naureen Bharwani, CIRES/NOAA GSL
*Brian Weir, Raytheon/EPIC

Janet Derrico, University of Colorado
Venita Hagerty, CIRA/NOAA GSL
*Paul Madden, CIRES/NOAA GSL

and many others from other EPIC Teams

NOAA EMC
GMU
CIRES

NOAA GSL
NCAR RAL

DTC
JCSDA

NOAA PSL

*PI9 team

What is
UFS?

The Unified Forecast System (UFS) is a
community-based, coupled,

comprehensive Earth modeling system.
The UFS numerical applications span local to
global domains and predictive time scales

from sub-hourly analyses to seasonal
predictions.

What is
UFS?

… applications share agreed-upon numerical
forecast system elements, including

Earth-system model components (e.g.
atmosphere, ocean, sea ice, land, chemistry,
etc.), observation processing, pre-processing,

data assimilation, forward forecasting, ensemble
and probabilistic processing, and

post-processing…[and] infrastructure such as
model coupling tools and workflow software.

We all run the same components, configured in
different ways

The Big 3+
Apps

MRW
Medium-Range Weather

SRW
Short-Range Weather

HAFS
Hurricane Application

Land DA

S2S
Subseasonal-to-Seasonal

Exascale
Prototypes

Atmospheric
rivers

RnR
Reforecast & Reanalysis

Total Coastal
Water

Current
system
architecture

Operational standards dictate a layered structure

Build a modular, portable, robust framework for running
the Unified Forecast System that supports research and
operations

Take a services-based approach to ensure extensibility and
usability by all of the UFS Applications

Develop a user-interface that the UFS Community can be
comfortable using

UW Team
Vision

Obtain more funding at a variety of institutions to join the
UW Team

Ensure buy-in from NOAA leadership in charge of each
App and Operations so that UW software can make it
through the research funnel

Regularly release tools for inclusion in Apps to start
iterative design process early

Apply software best practices to ensure a robust,
well-tested, easy-to-use toolbox and framework for UFS
workflows

UW Team
Goals

Short Term (Upcoming PIs)
Develop a set of generic, standalone tools to address common
high-maintenance problems.

Propose the changes necessary in the relevant UFS Apps and components.

Medium Term (Upcoming year)
Replace the configuration layer of the existing Apps with a framework that
unifies them around a service-oriented architecture (SOA) to achieve a
“plug and play” feel for a given experiment.

Requires developing necessary interfaces to the existing component drivers (e.g.,
bash run scripts) and existing workflow managers (e.g., ecFlow, Cylc, Rocoto).

Long Term (Next few years)
Use the SOA framework as a facade and apply the strangler pattern to
gradually replace and unify the underlying component drivers.

Unify gradually, iterate often, add value ASAP.

Unification
Strategy

Prioritizing
Unification

Common Tools

Common Drivers

Real-time, 6 hourly
cycled ocean-coupled

LAM with moving nests

3DEnVar LAM Prototype
with ensemble members

run on distributed resources

Real-time, hourly cycled
LAM with stationary

domains
EPI

C
JTTI

SE
NA

Standalone Tools

Configuration Management Tools for the UFS Weather
Model

● Currently there are ~10 different types of parameter files the model
uses to generate a forecast.

● These tools allow all parameter files to be managed from a single
YAML configuration file

○ Improves organization, readability, and understanding
compared to bash variables

● The tools will allow the Apps to use the parameter files (e.g.,
namelist, model_configure, etc.) directly from the model regression
tests

○ Decouples the weather model version from the workflow
○ Promotes increased compatibility between the workflow and

a variety of model versions
○ Reduces manual, repeated code maintenance when updating

to a new version of the model (Apps usually keep a copy of
these files in their own repositories, which is not ideal)

● A Python-based approach opens new doors for configuration
validation (planned for future releases)

● The basis for the Unified Workflow configuration system

Tools for
Standalone
Release

ecFlow and Rocoto Interfaces

● Takes in a YAML configuration file defining workflow
● Processes the information such as

○ Task resource requirements
○ Dependencies and triggers
○ Run-time environment

● Writes out necessary workflow definition files
○ Rocoto XML
○ ecFlow Suite Definition
○ ecFlow Job Cards
○ Standalone wrappers

● Dynamic and automatic at the time of experiment creation
● Tool is uncoupled to the experiment definition

Tools for
Standalone
Release

File Mover

● Moves files between various locations
○ Cloud block storage, local file systems, HPSS, URLs

● Alongside a database of known data stores, this tool will help users
stage the data they need as part of any workflow

● Enables users to work with data on various platforms with the same
interface.

○ Local copies can have very similar commands as remote copies
from a URL, for example.

○ Reduces overhead for understanding Python syntax and
caveats for equivalents to cp, sync, wget, aws cli, and others.

Tools for
Standalone
Release

GitHub Repository
https://github.com/ufs-community/workflow-tools

GitHub Wiki
https://github.com/ufs-community/workflow-tools/wiki

GitHub Discussion
https://github.com/ufs-community/workflow-tools/discussions

Read the Docs
A Contributor’s Guide and User’s Guide
https://unified-workflow.readthedocs.io/en/latest/

Stay in the
loop

https://github.com/ufs-community/workflow-tools
https://github.com/ufs-community/workflow-tools/wiki
https://github.com/ufs-community/workflow-tools/discussions
https://unified-workflow.readthedocs.io/en/latest/

CREDITS: This presentation template was
created by Slidesgo, including icons by
Flaticon, and infographics & images by
Freepik

Questions?
Suggestions?

Contact:
Christina Holt, christina.holt@noaa.gov

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

Backup Slides

A SOA
Unified
Framework

https://aws.amazon.com/what-is/service-oriented-architecture

What is Service-oriented Architecture (SOA)?

A service is software component that provides some functional capability

Services can communicate with each other and across platforms and
languages

Services can be reused in different systems

Multiple services can be combined to perform complex tasks

SOA is an architectural approach that can be applied to the
design and development of various types of software systems,

including enterprise applications, distributed systems, and
integrations between different systems

SOA is a broader concept that encompasses the design
principles, patterns, and practices for building modular,
interoperable, and scalable software systems based on

services.

SOA is a
design
pattern

SOA is exactly what we need for unification!

Not to be confused with SaaS – Software as a Service.

Unified
Framework
Services

https://aws.amazon.com/what-is/service-oriented-architecture

What are services?

Be fully interoperable – it doesn’t matter which App is running it

Be independent – changes to one service should not impact other
services

Be responsible for one thing

Employ standardized communication protocols

Be loosely coupled and stateless

Chunks of code that should:

Strangler
isn’t as bad
as it sounds

https://www.redhat.com/architect/pros-and-cons-strangler-architecture-pattern

Software as a Service

SaaS is a cloud computing model where software
applications are provided over the internet, and users

access them through a web browser.

With SaaS, users don't need to install or manage
software locally, as the applications are hosted and

maintained by the service provider

Not to be
confused
with SaaS

SaaS is NOT where we’re going with unification!

Unification
Approach

Strangler
isn’t as bad
as it sounds

The Strangler, or Strangler Fig Pattern is a software
design pattern that involves gradually replacing
an existing system with a new one, using the old

one as a foundation.

The pattern is named after the Strangler Fig plant,
which grows around a host tree and gradually

chokes it, eventually replacing it entirely.

Strangler
isn’t as bad
as it sounds

https://www.redhat.com/architect/pros-and-cons-strangler-architecture-pattern

Pros

Cons

Reduces risk when modernizing monolithic systems

The end user interface is delivered early in the process

Does not require a complete system overhaul on Day 1

It’s hard to modularize components that are tightly coupled

There may be many interfaces needed in the facade

A service transition could be rolled back if something goes wrong

Provides the development team ample time to iterate on the system
implementations – what works and what doesn’t.

Requires a lot of ongoing attention to changes occurring in both
the original system and the facade

All UFS Apps are not required to be on the same schedule

Configuration Subsystem
Responsibilities include:

Decoupling
the
subsystems

● Gathering user provided parameters
● Managing default settings for all portions of the System
● Validating that settings are appropriate and compatible
● Creating and populating experiment directories with

experiment-specific files and data
● Optionally, starting the workflow manager of choice.

Component
Drivers as
Services

Summary

Building a
 Unified Framework

Taking a Strangler
Approach

Standalone Services
&

Service Oriented
Architecture Pattern

Replace existing
components

gradually

W
H

AT
:

H
O

W
:

W
H

Y: Too many tightly coupled
workflows for UFS

