Moving Nest Features for

NOAA

William Ramstrom^{1,2}, Xuejin Zhang², Sundararaman G. Gopalakrishnan², Bin Liu³, Zhan Zhang⁴, and Ghassan J. Alaka Jr.²

¹ CIMAS, University of Miami, Miami, Florida
² NOAA/AOML/HRD, Miami, Florida
³ Lynker at NOAA/NWS/NCEP/EMC
⁴ NOAA/NWS/NCEP/EMC

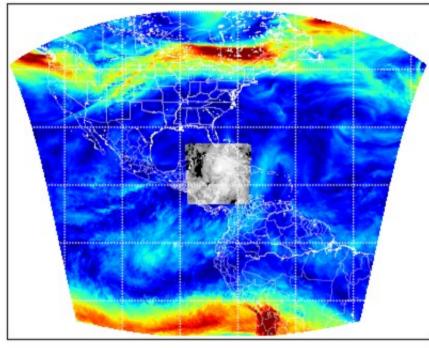
LIAEC

Moving Nest Overview

Limits in Global Forecast Systems

- Current global GFS resolution of 13 km
- To accurately model hurricanes, we need 1-4km resolution to capture strong gradients in the storm core
- Not feasible to run large/global domain at that resolution in operational timeframes

High Resolution Nesting


- Storm-following nest to provide high resolution of tropical cyclones
- Storm-centered regional, basin-scale regional, and global configurations supported
- Storm-centric regional configuration for operational system

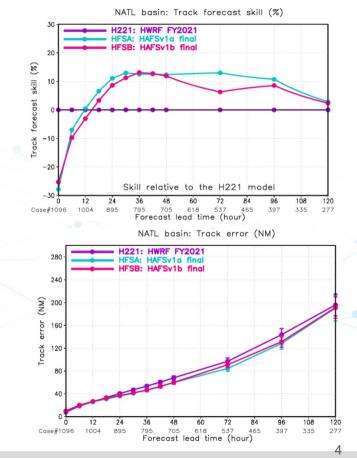
Moving Nest Implementa

Development Accomplishments

- Began running operationally for NOAA June 27
 - 6km regional parent
 - 2km moving nest
- Two configurations in operations
- Culmination of 4 years of development work

Moving Nest Features

Accurate


- Track 5-10% more accurate than HWRF
- Max Wind Speed also 5-10% more accurate

Fast

- Runtime Overhead 3%-7% compared to static nest
- Scales with forward motion of storm
- HWRF overhead is ~15-20%

Robust

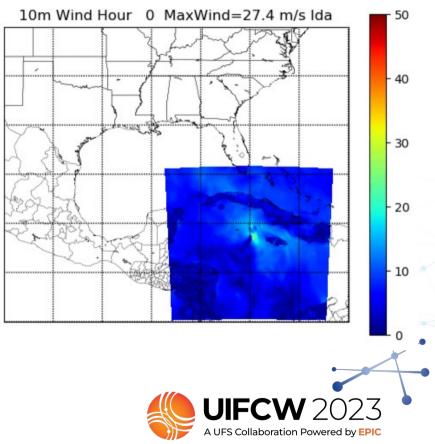
- 2020-2022 retrospective testing, stress tests
- Configurable
 - Enabled via namelist options

Verification diagrams courtesy of Bin Liu/EMC

Implementation

Nesting Design

- Nest halo code used for downscaling and transmitting coarse resolution data
- Prognostic variables must all be moved
- Nest points are aligned with parent points
 - Enhanced efficiency
- Prognostic Variable Staggering
 - Mass and tracers are cell volume averages on A grid
 - Winds are staggered on D-grid

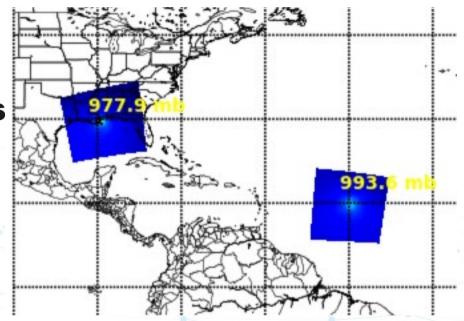

Model Variables

- Prognostic
 - T, delz, delp, u,v,w wind, humidity, tracers
- Physics
 - 56 separate variables in 1D vectors
- Static surface fields
 - High resolution
 - Nest resolution from files
- Grid distances, areas, Coriolis, etc.
 - Coloulated at C4 bit ana sisian frame lat/lang

Internal Tracker

- Internal tracker ported from HWRF based
 on GFDL tracker
- Center evaluated using 9 different variables
- Sea level pressure, 10m winds, vorticity
- 850mb wind, vorticity, geopotential
- 700mb wind, vorticity, geopotential

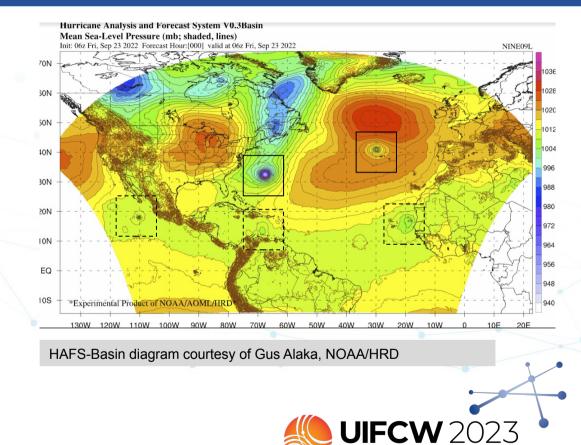
Multiple Moving Nest Des


Multiple Moving Nests

- Regional, Basin, Global configurations
- Same parallelism as single moving nest
- Nests timestep concurrently with parent
- Nests aligned with parent grid
- Consider merging feedback when nest points overlap

Multiple Moving Nests

- Dual nest cases now running
 - Coarse and high resolution
- Validation underway
- Nest Tests:
 - 3 moving nests
 - Overlapping nests
 - Mix Static & moving nests

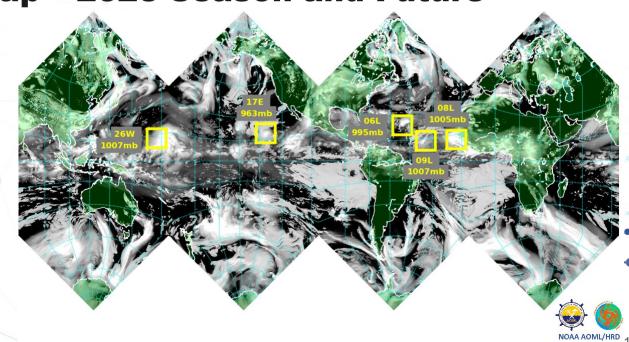


Sally and Teddy, Sept. 2020

HAFS-Basin

- Successor to Basin-Scale HWRF
- Multiple nested domains
- Permits cycled data assimilation
- Goal is to cover NHC AOR
- Better capture storm-storm interactions

A UFS Collaboration Powered by EPIC

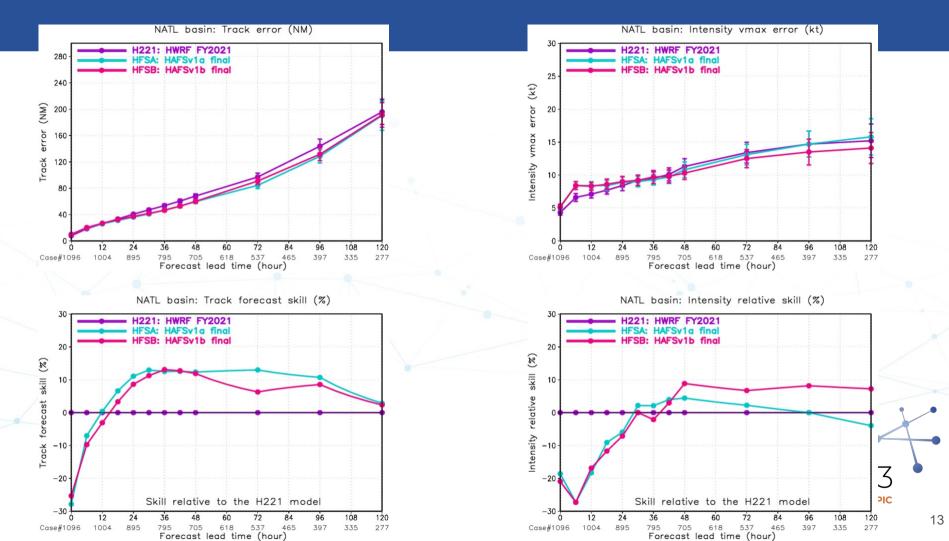

HAFS Roadmap – 2023 Season and Future

Accomplished

- Storm-centered
- Operational 2023
- Two configurations

Long Term

- Basin-scale
- Multi Storm
- Refinement Ratios
- Global


Questions?

AOML Hurricane Model Viewer https://storm.aoml.noaa.gov

AOML's Hurricane Modeling and Prediction Program https://www.aoml.noaa.gov/hurricane-modeling-prediction/

