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DTC UFS Physics Testing and Evaluation (T&E)
activities & connection to UFS Stages and Gates

RL1 < > RL9
T
Objective #1 Facilitate transitions of near-term, pre-operational physics improvements to
(UFS R20) operations.
T

Support one of the longer-term, high-priority UFS objectives of realizing the

Objective #2 A, . N ‘s
unification of physics parameterizations across applications and scales

(NOAA Base) | io\ards a unified Earth System Modeling (ESM) system.

<
m
Int. Gates &’ nternal Gates

Stage 1 Stage 2 Stage 3 Stage 4:
Preliminary Pre-operational Integration & Testing
Ideation Experimentation Experimentation in Pred. Packages

NOAARL 1, 2 NOAARL 3,4 NOAARL 5-6 NOAARL7-8
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Real case studies - over both /@ N
£ UIFCW 2023
Iand and ocean (\_' A UFS Collaboration Powered by EPIC
e (Capture processes of moist physics, atmospheric boundary layer, surface conditions, and their
interplays.

® Represent phenomena under various cloud/weather/climate regimes:

©  ARM LASSO non-precipitating shallow cumulus cases.
© Atlantic tropical cyclones (TCs; Hurricanes Florence, lan and Laura).
© CONUS cases.

o  DYNAMO case with a transition from shallow to deep convection during the Madden-Julian
Oscillation (MJO) initiation.

o Marine ARM GPCI Investigation of Clouds (MAGIC) case featuring a transition from
stratocumulus off the west coast to cumulus clouds in the trade wind regime.

o  TWP-ICE: Active and suppressed stages of Australian Monsoon case
e Simulated and evaluated against benchmarks (observations or analysis)

o CCPP single-column model (SCM) and/or UFS-SRW limited-area model (LAM)

‘ DTC, © 13 km and/vs 3 km for most cases 3



DTC contributions to targeted physics
for UFS

Worked more closely with physics developers to determine physics to work on:

o Code base - 3 suites (suite definitely file only; exact code base described below)
© GFS_v17_p8 (as in CCPP v6.0 or UFS-SRW v2.1; an experimental but not the final P8)
© RRFS vibeta & HRRR (as in UFS-SRW v2.1)

© Or, using the latest code base (top branch) when evaluation conducted

e Several physics enhancements/innovations (“PR watchers”)

o Prognostic and scale-adaptive cumulus convection closure (dubbed progsigma) (POC: Lisa
Bengtsson@NOAA/PSL; ufs/dev PR18)

o Updated Thompson microphysics (POC: Ruiyu Sun@NOAA/EMC; ufs/dev PR19)

o Refactored RRTMGP (POC: Dustin Swale @NOAA/GSL; ufs/dev PR34)

o Updated unified gravity wave physics (POC: Mike Toy@NOAA/GSL; ufs/dev PRs 22 & 40) P
o Updated MYNN-EDMF PBL & shallow cumulus (POC: Joe Olson@NOAA/PSL; ufs/dev Pfﬁ) —o

e DTC visitor project by Andy Hazelton (NOAA/AOML/HRD) ‘[I‘ UIFCW 2023 &

o .
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Total vs Grid-scale vs Parameterized precip
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1. Prognostic & scale-
adaptive cumulus
convection closure

- s
xaifel@ bb&mpma? PR18)

Hurricane Floren

o CTRL@3 km produces more grid-scale
precipitation, low clouds, and microphysics
resolved hydrometeors.

® Progsigma (Bengtsson et al. 2022): less scale
sensitivity & tends to prevent microphysics from
dominating rainfall production as grid spacing

decreases.

® |mportance of interplays between moist physics

components when considering scale

awareness.
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2. Updated Thompson microphysics (PR 19)
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Updated Thompson microphysics — improved low cloud fraction, esp. ‘({Q UIFCW 2023
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3. Refactored RRTMGP (PR 34)
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Example - CCPP SCM simulations of DYNAMO

RRTMGp vs. RRTMG (top branch) - better wrt. upper tropo cold
condition but still colder than obs (perhaps due to radiative coolin

high clouds)

Dearth of shallow cumulus clouds - an issue.
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4. Updated unified gravity wave physics (PR 22 & 40)

Upper-air verification Bias - surface wind
speed

GWD cases over CONUS - Upper Air GWD cases over CONUS - Upper Air
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Example — UFS-SRW LAM simulations w/ METplus for 9 CONUS cases yr
Using GSL gravity wave drag (GWD): &
* Overall higher skill in predicting upper-air variables ‘”‘ UlFCW 2023
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éc, * But, lower skill of surface temperature and winds (wrt both biagznd RMSE). ’



-
—9

5. Updated MYNN-EDMF PBL & shallow cumulus (PI?.L/43')
>
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Time series of total cloud fraction [%] vs

TSI & LES
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RRFSL6S i ' ——— ® PR43 improves cloud fraction
: = ]z (wrt. amount and continuity)
1 using both GFSL127 and
M S v RRFSL65, particularly in the
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Summary

e DTC, working tightly with developers, tested and evaluated physics
updates/innovations for the operations, across the spectrum of model physics.

® Results inform both improvements or areas of attention in these physics, and
stress the importance of

o Interplays between physics components when considering scale
awareness.

o Appropriate vertical coordinate to work with particular physics.
o Physics applicable to cases across different cloud/weather/regimes.

® |t is hopeful that our evaluations against relatively reliable benchmarks can .
help constrain parameterized processes and inform further physics L '_.
°

development/improvement. p o«
4@ UIFCW 2023
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Activities for UFS-R20 Phase 1l

DTC Advanced Phys T&E
Interest Survey Results -
Feedback from Physics
Developers (as of Dec, 2022)
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Top processes/phenomena for UFS physics
development were identified, in combination with
scalability investigations:

® |nteraction between land/ocean surface states,
boundary layer, and shallow cumulus — also
coordinated with SFS development

® [nteractions among microphysics, clouds,
precipitation, radiation and aerosoils.

® (Year 5 beyond) Deep convection (oceanic and
continental) (MCS, CAPE, convective initiation

and cold pools). .7 \ o
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DTC Visitor Program

https://dtcenter.org/visitor-program

Propose a project to work on with us!
Two types of visitor projects:

Pl - Up to 2 months salary, travel and per
diem - can be split into multiple visits

Graduate Student - Up to 1 year of
temporary living per diem and travel
expenses for graduate student, plus
support for advisor visits

See Announcement of Opportunity on
DTC website for more information on
how to apply and guidance on topics of
interest

Ll DTC Visitors Institutions
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