The Current State of NOAA's Rapid Refresh Forecast System

Matthew E. Pyle^a, Curtis R. Alexander^b, Jacob R. Carley^a, Stephen Weygandt^b on behalf of the wider RRFS team

^a NOAA/Environmental Modeling Center, College Park, MD ^b NOAA/Global Systems Laboratory, Boulder, CO

Planned NWS regional CAM unification

A move toward UFS: RRFS

A bold plan to replace all CAM guidance with a *single North American domain* forecast ensemble running at 3 km grid spacing

- Hourly DA cycle, w/ a 3 km, ~30 mem ensemble for hybrid 3DEnVar
- Forecasts to 60 h every 6 h (deterministic + forecast ensemble), with deterministic-only forecasts to 18 h for other cycles
- Physics in deterministic RRFS broadly similar to those of the HRRR
- 65 vertical levels; 2 hPa model top
- Subsumes all products and functionality from HRRR, NAM nest, HiresW, and HREF

RRFSv1 Data Assimilation Cycling

- Two-way interaction between 30 member 3-km
 DA ensemble () and 3-km deterministic RRFS
 hybrid 3DEnVar analysis()
- Partial cycle spin-up of atmosphere from GFS twice per day (RAP like), land states fully cyc'd
- All ensemble members (in square) and deterministic/control (circle) on 3-km NA grid

Planned additions to RRFSv1

Multiscale DA

- Inclusion of modeling small lakes (w/ CLM Lake Model) matching the functionality contained in HRRR, but for larger RRFS domain.
- 32-bit physics (maybe) efficiency gained from this change would ease the computational burden of running RRFS.

Multiscale DA Algorithm

- Scale and variable dependent localization (SDL/VDL) employed in the EnVar DA algorithm
 - Ensemble covariances undergo scale-selective filtering (short & long waves)
 - Localization radii appropriate for each scale and variable group are used
- Allows for all observations to be assimilated simultaneously
 - Eliminates 2 step implementations with ad-hoc separation of observations (sondes vs radar)

Imbalance (as measured by mean absolute pressure tendency) is ~40% lower over 1 h DA cycle forecast with proposed multiscale approach than with two step approach

A UFS Collaboration Powered by EPIC

Heavy precipitation issue

- A high bias in heavy precipitation is a long-standing RRFS/FV3 issue, particularly in the warm season. Also manifests as a high bias at higher reflectivity thresholds.
- A more focused effort to solve it has been ongoing over the last year (including a coordinated effort between GFDL, GSL, and EMC), leading to exploration of a variety of approaches:

Less scientific (damping) approaches

- Damping of condensational heating
- Capping of MP heating tendency

Scientifically-based approaches

- Revisions to physics-dynamics coupling
- Inclusion of Grell-Freitas deep convection

Parameterized Deep Convection w/ Grell-Freitas

[Not yet in official RRFS Prototype System]

Forecast ensemble considerations

- Computational constraints will limit RRFSv1 to generating 6 members (5 ens members + deterministic run) per cycle, so it will utilize members from previous cycle to generate a 12 member, time-lagged ensemble.
- Single-physics or multi-physics configuration?
 - RRFS long term plan is to get to a single physics configuration, but possibly use multi physics for RRFSv1 to enhance ensemble spread.
 - Both options were run for evaluation during the 2023 HWT/SFE period.
 - Decision still to be made for RRFSv1 options show differences in skill/spread/reliability space (and neither unambiguously better).

A UFS Collaboration Powered by EPIC

Figure courtesy Jili Dong

RRFS single/multi-physics ensemble comparison (12 member TL) - simulated reflectivity reliability

Figure courtesy Jili Dong

Summary

- Tremendous progress has been made on the RRFS system, but work remains to get it to a place where stakeholders will be comfortable with it replacing HRRR and HREF (among other models) in NWS operations.
- The high precipitation bias and deficient RRFS ensemble performance on day two (noted in HWT/SFE results) are two critical items that must be improved.
- Have been targeting a late 2024 implementation for RRFSv1, but addressing the issues listed above is likely to push the implementation date back into 2025.

QUESTIONS??

Supplemental slides

Anticipated RRFSv1 Forecast Design

CLM Lake Model for the RRFS

- The CLM code is committed to the UFS Repository, includes all modifications done for HRRR
- The RRFS lake depth uses GLOBv3 data
- Cycling of lake variables has to be enabled and tested in RRFS configuration.

To do: mask out the Great Lakes from the GLOBv3 lake mask (GLs are being handled by FVCOM in RRFS)

CLM Lake information courtesy of Tanya Smirnova

Updated Physics-Dynamics Coupling

Acknowledge Kevin Viner (EMC) for this work

Possible introduction of Subgrid Vertical Transport Scheme

- JMA and other centers have noticed challenges with excessive grid point storms in their modeling systems
- To address this, they have introduced a scheme to account for unresolved vertical transport of heat and moisture in deep convection
- Known as The Leonard Term
 EMC is exploring the feasibility of including this term into the UFS

$$L_{\phi w} = \frac{K_L}{12} \left(\Delta_x^2 \frac{\partial \bar{\phi}}{\partial x} \frac{\partial \bar{w}}{\partial x} + \Delta_y^2 \frac{\partial \bar{\phi}}{\partial y} \frac{\partial \bar{w}}{\partial y} \right)$$

Figure obtained from presentation by Hiroshi Kusabiraki et al. (2021) demonstrating impact at JMA

Acknowledge JMA visiting scientist Sho Yokota and his JMA colleagues

A UFS Collaboration Powered by EPIC

RRFS time-lagged, multi-physics membership during

	MP	PBL	Sfc	T perio	Cu Cu	IC/LBC
m1 (ctrl)	Thompson	MYNN	MYNN	RUC	N/A	RRFS hybrid/GFS
m2	Thompson [*]	H-EDMF	GFS	RUC [*]	saSAS Shal	RRFS enkf1/GEFSm1
m3	Thompson*	TKE-EDMF	GFS	RUC [*]	saSAS Shal	RRFS enkf2/GEFSm2
m4	NSSL**	MYNN [*]	MYNN*	RUC [*]	N/A	RRFS enkf5/GEFSm5
m5	NSSL**	H-EDMF	GFS	RUC*	saSAS Shal	RRFS enkf6/GEFSm6
m6	NSSL**	TKE-EDMF	GFS	RUC [*]	saSAS Shal	RRFS enkf7/GEFSm7

*: Stochastic physics parameterization (SPP)

**: parameter perturbation using Latin hypercube sampling with multidimensional uniformity (lhs-mdu) SPP also applied to GWD, radiation sppt and skeb are applied to all perturbed members

