The National Hurricane Center Model Evaluation Process for the Operational Implementation of the Hurricane Analysis and Forecast System Version 1 (HAFSv1) Models

Jonathan Martinez^{1,2}

David Zelinsky¹

Wallace Hogsett¹

Kate Musgrave²

John Cangialosi¹

Benjamin Trabing^{1,3}

Affiliations

¹NOAA/NWS/NCEP National Hurricane Center

²Cooperative Institute for Research in the

Atmosphere

³University Corporation for Atmospheric Research

Planning and coordinating model evaluations

HAFSv1 2020-2022 Evaluation Recipe

Optimal interpolator offsets

☐ Aim to minimize MAE associated skill for intensity

General evaluation with NHC forecast verification code (early and late guidance)

- ☐ HFSA/HFSB track/intensity/wind radii errors & biases relative to HWRF
- ☐ Track errors/biases relative to GFS (parent model)
- ☐ Frequency of superior performance for track/intensity/wind radii
- □ Consensus model replacements with HFSA/HFSB □ TVCA, TVCE, IVCN, and RVCN
 - ☐ For TVCA and RVCN can test replacing HWRF with either HFSA or HFSB

- RI (occurring or forecast to occur at verification time)
- Regional (e.g., MDR, Caribbean)
- ☐ Wind speed thresholds (e.g., 64 knots to isolate hurricanes from TD/TS)
- ☐ Individual storm evaluations (list of cases needed)

- ☐ Replace HWRF/HMON with HFSA/HFSB
- ☐ Merge HFSA/HFSB with HWRF/HMON
- □ Input model exclusion tests
- ☐ Training dataset length experiments

Additional evaluation considerations

- ☐ Probability of detection vs. false alarm ratio (categorical performance diagrams)
- o HWRF, HMON, HFSA, HFSB □ Consistency metrics

 - o Ditchek "relative consistency" metric
 - Combines MAE, Median of absolute errors, and FSP
 - o Franklin and Penny "self-consistency" metrics
 - FSTDV4 standard deviation of four most recent forecasts ■ FDIFF12 - difference between most recent forecast and 12-h prior
- ☐ Stratifying by presence of aircraft reconnaissance
- Center fix within a time window prior to verifying time (e.g., 3-6 h)
- ☐ Simulated satellite imagery
- ☐ Spatial distributions of model verifications (coordinate w/ Tim Marchok and Gus Alaka)

- Formulating preliminary experiments with the Hurricane Specialist Unit (HSU) at NHC
- Active communications with the Environmental Modeling Center (EMC)
- Successive updates and adaptive integration of feedback from HSU
- Briefings with EMC/NCEP

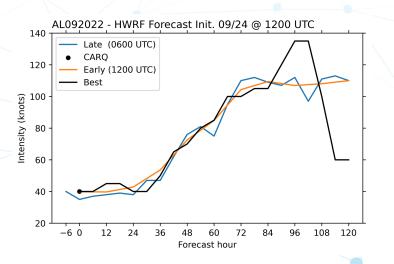
NHC model evaluation overview

- 1. Generating a fresh set of early guidance forecasts and determining the "optimal" interpolator offsets
- 2. Testing the addition or replacement of models in the simple consensus aids
- 3. Testing the addition or replacement of models in HCCA
- 4. Assessing the performance of individual models to be added or replaced
- 5. Synthesis & Recommendations

The National Hurricane Center Consensus Aids

Model	Description	Model(s) to Replace	
TVCN	Track Variable Consensus	HWRF (+HMON in EPAC)	
IVCN	Intensity Variable Consensus	HWRF + HMON	
RVCN	Wind Radii Variable Consensus	HWRF	
HCCA	HFIP Corrected Consensus Approach Model	HWRF + HMON	
DTOPS	Deterministic to Probabilistic Statistical Model for Rapid Intensification	HWRF	
NNIC	Neural Network Intensity Combination Model	HWRF	

The NHC Forecast Verification Software


Input file locations		Normal Value
data	Subdirectory for a-decks	data
	READ_SUPA: Read data from supplemental a-decks?	
	Subdirectory for supplemental a-decks	
wwpts_us.txt	File containing watches and warnings	wwpts_us.txt
Verification sample	specifications	Normal Value
00000000,00000000	MINDATE,MAXDATE (yyyymmdd) to include (issuance)	00000000,0000000
YYYY	Include forecasts from 00,06,12,18Z?	YYYY
0,90	RLATMIN, RLATMAX (N) for initial positions	0,90
-140,0	RLONMIN, RLONMAX (E) for initial positions	-140,0
N	Include only forecasts verifying within a box?	
-20,90	FLATMIN, FLATMAX (N) if verifying only in a box	
-140,-50	FLONMIN, FLONMAX (E) if verifying only in a box	
	CLPR/SHFR option: 0=Calc,1=Wrt,2=Rd c-deck,3=Rd a-deck	
00000	MLAG(5): Lag (h)	00000
	Accept 12-h interpolations as 6-h interpolations?	
	Minimum number of models required for variable cons.	
N	WATER_ONLY: Stop verif when fcst or bt hits land?	
	FCSTNEARLAND Keep (A)ll, (N)ear or (F)ar from land?	
	SIZECHECK Keep (A)ll, (L)arge or (S)mall storms?	
200	DIST_LAND Fcst tossing threshold (nmi)	200
200	STMSIZE ROCI size-tossing threshold (nmi)	200
	Intensity (kt) assigned to dissipation stage	
	WS_CRIT_VT: Apply WS criteria to verification time?	
N	ACPTALLST_IT: Accept any status at initial time?	
N	ACPTALLST_VT: Accept any status at verifying time?	
N	VER_TD_INIT: Only verify fcst if TD at T=0?	
N	VER_NY34: Only verify prior to system reaching 34 kt?	
N	FDIFF_ONLY: Only verify if forecasts different?	
N	VER_RI: Only verify if RI/RW occurring at VT.	
	VER_RIF: Only verify if RI occurring or fcst at VT.	
	DELW_RI, DELT_RI: RI/RW wind,interval values (kt,hr)	30,24
N	VICAT: Verify intensity categories, rather than speed?	
N	VER_OPER: Use operational track to verify with?	
N	VER_SAB: Use SAB classifications to verify with?	
	SKP_ENSM: Skip over ensemble members in a-deck?	

- Fortran processing and Python post-processing
- Configurable options for verification criteria
 - HFIP RI definition, Watches/Warnings, Aircraft reconnaissance, Distance to land masses, and more
- Flexible verification of single/multiple storms and seasons
 - Aggregated per storm, year, and over a range of years
- Tabulation of forecast errors
- Generates variable consensus aids on-the-fly
- CLIPER5/D-SHIFOR5 for climatology/persistence baseline in the annual Tropical Cyclone Reports

Generating a fresh set of early guidance forecasts

- Prerequisite to all subsequent analyses
- Guidance from dynamical models arrives "late" to forecasters
 - Example 1200 UTC cycle with forecast issued @ 1500 UTC, but model output arrives after forecast issuance

Interpolation Process

- Late forecast interpolated to 3-h time steps with a linear b-spline
- 2. Smooth 10 times with a 1-2-1 filter
- 3. Adjust current intensity (t = 0 h) with CARQ entry
- 4. Relax intensity offset within the time window specified by the offset start (T_i) and offset end (T_f)

"Optimal" Interpolator Offsets

Baseline Definitions

- 1. Constant offset
- 2. Lagged forecast
- 3. Offset applied at $\tau \le 06 \text{ h}$
- 4. Offset applied at $\tau \le 12 \text{ h}$

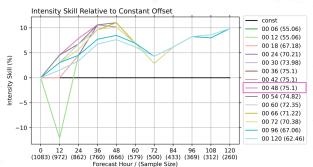
For each baseline (m) and offset start/stop couplet $(n^{th} \text{ model})$:

 Sum the intensity skill S over all basins (j) and verifying times (k)

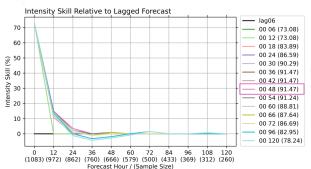
$$S_{m,n} = \sum_{k=0}^{10} \sum_{j=0}^{1} S_{j,k,m,n}$$

j = Basin (AL, EP)

k =Forecast verification time (0–120 h)

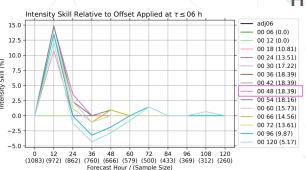

m = Baseline (see Slide 2)

n = Model (offset start/stop couplet)

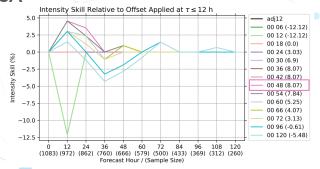


Operational Interpolator Offsets for HFSA/HFSB

Constant Offset


Lagged Offset

Aggregated over AL/EP basins and all verifying times τ = {00, ..., 120} h


HFSA –
$$T_i$$
 = 00; T_f = 48
HFSB – T_i = 06; T_f = 42

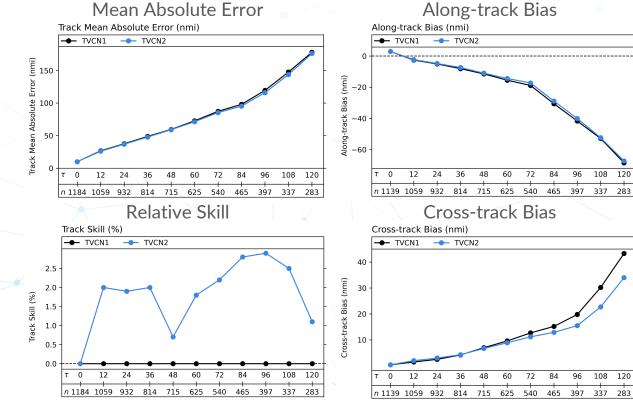
Offset at $\tau \leq 06 \text{ h}$

Example for HFSA

Offset at $\tau \leq 12 \text{ h}$

Track Variable Consensus (TVCN) Verification

TVCN - Variable, equally-weighted consensus with minimum 2 members


North Atlantic (AL) – 6 models with only HWRF to be replaced

- TVCN1 AVNI, CTCI, EGRI, EMNI, EMXI, HWFI
- TVCN2 Replace HWFI with HFAI

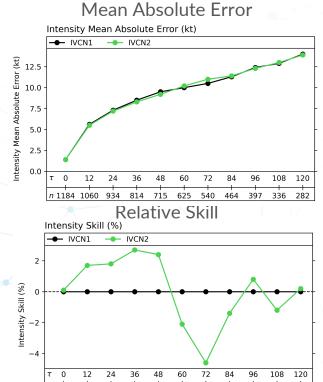
** Note -TVCN with HWRF, HMON, HFSA, HFSB in operations for 2023

Track Variable Consensus (TVCN) Verification

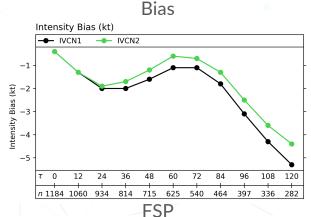
- HAFSv1 track forecasts consistently outperform **HWFI** and **HMNI**
 - Reduced along- and crosstrack biases

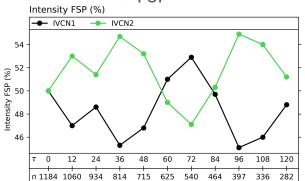
Intensity Variable Consensus (IVCN) Verification

IVCN - Variable, equally-weighted consensus with minimum 2 members


North Atlantic (AL) – 5 models with HWRF + HMON to be replaced

- IVCN1 DSHP, CTCI, HMNI, HWFI, LGEM
- IVCN2 Replace HWFI + HMNI with HFAI + HFBI


** Note -IVCN with HWRF, HMON, HFSA, HFSB in operations for 2023



Intensity Variable Consensus (IVCN) Verification

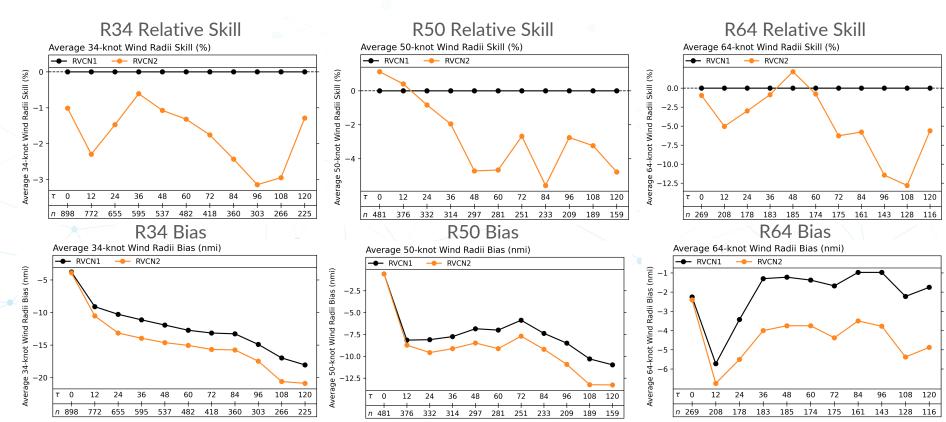
n 1184 1060 934 814 715 625 540 464 397 336

- HAFSv1 improves intensity forecast skill of IVCN through day 2
- Slight degradation of skill between days 2-4
- Reduced intensity bias

Wind Radii Variable Consensus (RVCN) Verification

RVCN - Variable, equally-weighted consensus with minimum 1 member

Different techs given uniform interpolator offsets (06/18) compared to track/intensity


North Atlantic (AL) – 4 models with HWRF to be replaced

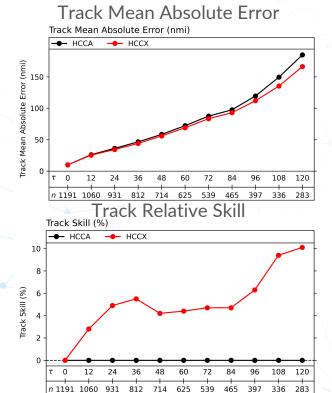
- RVCN1 AHNI (AVNI), CHCI (CTCI), EHXI (EMXI), HHFI (HWFI)
- RVCN2 Replace HHFI (HWFI) with HHAI (HFAI)

** Note -RVCN with HWRF, HFSA, HFSB in operations for 2023

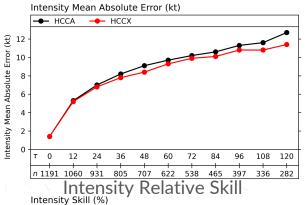
Wind Radii Variable Consensus (RVCN) Verification

HCCA Verification

HCCA - Variable, unequally-weighted consensus using a "super ensemble" approach

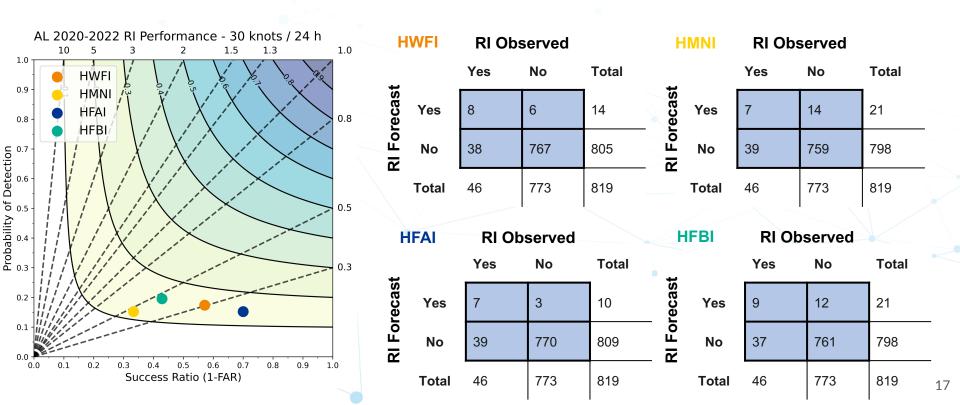

Leave-one-out training - All TCs included in training data except the one being forecast

- HCCA baseline 2022 configuration
- HCCX (track) add HFAI + HFBI (keep HWFI)
- HCCX (intensity) add HWFI + HMNI (keep HWFI + HMNI)


** Note - HCCA has HWRF, HMON, HFSA, HFSB and additional updates for 2023.

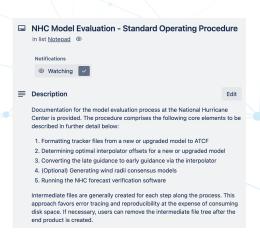
HCCA Verification

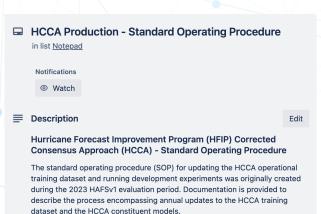
Track Mean Absolute Error

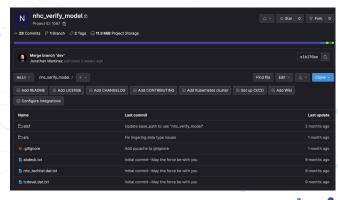

10 HCCA HCCX

10 TO 12 24 36 48 60 72 84 96 108 120 1191 1060 931 805 707 622 538 465 397 336 282

 Track and intensity forecast skill improve up to ~10%

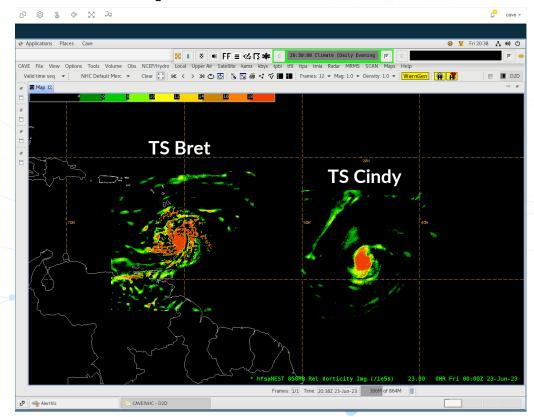



Rapid Intensification – 25 kt/24 h (occurring or forecast)



Summary of NHC Model Evaluation Process

- Multifaceted and multiorganizational evaluation for HAFSv1 transition to operations
 - o Coordination between NHC, CIRA, EMC, HRD, DTC, and others
- Moving forward- standardizing the model evaluation process
- Looking ahead parallel evaluations with METplus
 - Synthesizing NHC Verification Software features



A sneak peak of HAFS in Cloud AWIPS

- Coordinating with Technology and Science Branch (TSB)
- Cloud AWIPS as a testbed/onramp for operations

