

浴

औ

x

DOD

Evaluation of High Resolution Prototypes for the Next Global Forecast System GFSv17

25 Jul 2023, UIFCW Workshop

NATIONAL WEATHER SERVICE

Lydia Stefanova¹, Jongil Han², Wei Li³, Jessica Meixner², Jiayi Peng⁴, Sulagna Ray³, Mallory Row³, Catherine Thomas²

¹Lynker at NCEP/EMC, ²NCEP/EMC, ³SAIC at NCEP/EMC, ⁴Axiom at NCEP/EMC

Atmospheric Physics

Atmospheric Physics	Data Assimilation	Coupled Model Component Development
NCEP/EMC: Jongil Han, Michael Barlage, Anning Cheng, Bing Fu, Hong Guang, Sanath Kumar, Xu Li, Wei Li, Qingfu Liu, Eric Sinsky, Ruiyu Sun, Kevin Viner, Helin Wei, Bo Yang, Fanglin Yang, Rongqian Yang, Weizhong Zheng, Xiaqiong Zhou ESRL/GSL: Ben Green, Joseph Olson, Tanya Smirnova, Shan Sun, Xia Sun, Michael Toy JCSDA/UCAR:Dom Heinzeller, ESRL/PSL: Lisa Bengtsson, Jian-Wen Bao, Clara Draper, Grant Firl, Songyou Hong, Philip Pegion, Dustin Swales DTC: Ligia Bernardet, Weiwei Li, Man Zhang	NCEP/EMC: Catherine Thomas, Guillaume Vernieres, Daryl Kleist, Cory Martin, Andrew Collard, Jiarui Dong, Andy Eichmann, Travis Elless, Nick Esposito, Iliana Genkova, Azadeh Gholoubi, Brett Hoover, Xin Jin, Emily Liu, Haixia Liu, Hyun-Chul Lee, Xuanli Li, Ron McLaren, Dagmar Merkova, Sudhir Nadiga, Shastri Paturi, Ashley Stanfield, Steve Stegall, Andy Tangborn, Russ Treadon, Yaping Wang, Youlong Xia CIRES/GSL: Bo Huang, Mariusz Pagowski PSL: Clara Draper, Jeff Whitaker JCSDA/UCAR: Kriti Bhargava, Travis Sluka	NCEP/EMC: Jessica Meixner, Jiande Wang, Lydia Stefanova, Jun Wang, Yuejian Zhu, Neil Barton, Saeideh Banihashemi, Arun Chawla, Bing Fu, George Gayno, Robert Grumbine, Walter Kolczynski, Matthew Masarik, Avichal Mehra, Ali Salimi-Tarazouj, Denise Worthen ESRL/GSL: Ben Green, Shan Sun ESRL/PSL: Lisa Bengtsson, Phillip Pegion GFDL: Alistair Adcroft, Rusty Benson, Stephen Griffies, Robert Halberg, Matthew Harrison, Brandon Reichl, Marshall Ward NCAR: Alper Altuntas, Gokhan Danabasoglu, Keith Lindsay, Gustavo Marques NRL/ESMF: Gerhard Theurich GMU: Ben Cash, Jim Kinter, Lawrence Marx, Cristiana Stan FSU: Alexandra Bozec, Eric Chassignet, Alan Wallcraft
Field Evaluation	Products	NASA: Akella Santha Univ. Alaska: Katherine Hedstrom U. Mich : Christiane Jablonowski
NCEP/EMC: Geoff Manikin, Alicia Bentley, Mallory Row, Shannon Shields NWS Regional SSDs NCEP Centers	NCEP/EMC: Hui-Ya Chuang, Andrew Benjamin, L. Gwen Chen, Yali Mao, Wen Meng, Bo Cui	Univ. Victoria: Andrew Shao
Atmospheric Composition R SER	ViniFastructure	Coupled Model Evaluation dy Nation // 2

Outline

High-resolution prototypes: HR1

- Specification of HR1
- Modeling system differences between GFSv16, HR1, and planned GFSv17

HR1 evaluation

- Evaluation targets
- Results

Summary

High Resolution Prototypes: HR1

Starting point: P8 (deterministic, lower resolution, all system components in) High-Resolution Prototypes: <u>HR1 (completed)</u>, HR2 (in progress), HR3 (planned), ... End point: GFSv17

Details of HR1

• Model

Coupled Model: Atm (C768) - Ocean (¼ tripolar) - Ice (¼ tripolar) - Wave (¼ tripolar)

• Time periods

Summer: June 1– Aug. 30, 2020, cold start forecasts at 00Z cycle every 3 days, 16 day forecast Winter: Dec. 03, 2019 – Feb. 26, 2020, cold start forecasts at 00Z cycle every 3 days, 16 day forecast Hurricane: July 20, 2020 – Nov 20th, 2020, cold start forecasts at 00Z cycle everyday, 7 day forecast

• Initial conditions

Atm: GFSv16

Land: New spin up

Wave: New spin-up forced from GFSv16 (Winter), interpolated from GFSv16 for (Summer, Hurricane) Ocn/Ice: Replay

Differences between GFSv16, HR1, and GFSv17

<mark>GFS v16</mark>	HR1	GFSv17
Atm: C364, L127 GFSv16 physics including • Land: NOAH • GFDL microphysics • NSST Ocean: N/A Ice: N/A Wave: 9-25km Aerosols: N/A	 Atm: C768, L127 Updated physics including Land: NOAH-MP Thompson microphysics NSST Ocean: ¼ tripolar Ice: ¼ tripolar Wave: ¼ tripolar Aerosols: Not invoked 	 Atm: C768, L127 Updated physics including Land: NOAH-MP Thompson microphysics NSST Ocean: ¼ tripolar Ice: ¼ tripolar Wave: unstructured Aerosols: In GDAS deterministic forecast only and no aerosol-radiation interaction
GDAS DA	no DA	GDAS DA (Weakly Coupled)

Evaluation targets

Comparison between HR1 with GFSv16 for

- Global distribution of biases
- MJO
- AC score card geopotential heights, winds, temperature
- CONUS 10-m wind biases
- CONUS 2-m temperature biases
- CAPE magnitude
- TC track and intensity

Tools

- Non-METplus-based scripts, as in prior prototype evaluations
- METplus-based EMC_verif-global package (<u>https://github.com/NOAA-EMC/EMC_verif-global.git</u>)

Total Clouds, SFC Downward Shortwave, Upward longwave: Bias (DJF)

GFSv16 Bias

HR1 Bias

HR1 minus GFSv16

nercent

Bias ufs hr1 minus GFSv16: mean=-5.50

Total clouds generally reduced, but increased south of equator in the eastern tropical Pacific and Atlantic. The reduction is an improvement over Indian Ocean and high latitudes

SFC downward SW underestimation exacerbated in eastern tropical Pacific and Atlantic

SFC upward SW shows negative bias over deserts and sea ice. Result of lower desert albedoes and lower ice concentrations

NATIONAL WEATHER SERVICE

SW and SST bias in HR1 (DJF)

Spatial structure similar to low-res P8

Net SW bias is generally positive, except south of the equator in the eastern tropical Pacific and Atlantic, where HR1 has increased cloud amounts and exacerbated negative downward SW bias

Warm SST bias in the eastern equatorial Pacific and Atlantic. Cold bias south of there.

Close correspondence between net SW bias and SST bias; any discrepancies are largely from the ICs

Biases growing with lead time (not shown).

MJO

NATIONAL WEATHER SERVICE

AC

• Improved AC in HR1 for both seasons

Amplitude error

• Reduced amplitude error in HR1 for both seasons.

Phase error

- Reduced phase error
 - Still too slow in DJF
 - Switched from too fast to too slow in JJA.

For both GFSv16 and HR1, larger amplitude bias in strong MJOs; larger propagation bias in weak MJOs.

ACC scorecard

Computed with EMC_verif-global package

NATIONAL WEATHER SERVICE

HR1 is worse than GFSv16 at the 99.9% significance level

HR1 is worse than GFSv16 at the 99% significance level https://github.com/NOAA-EMC/EMC_verif-global.git

	HR1 is better than GFSv16 at the 99.9% significance level
I	HR1 is better than GFSv16 at the 99% significance level
Ī	HR1 is better than GFSv16 at the 95% significance level
Ì	No statistically significant difference between HR1 and GFSv1

					N	N. An	ıeric	a			N.	Hem	isph	ere			S.	Hem	isph	ere	
				Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10
			250hPa																		
			500hPa																		
DJF		Heights	700hPa							▼						•					
			1000hPa																		
	Anomaly Completion	N 7 (250hPa							•											
	Coefficient	Wind	500hPa													•					
	Coemicient		850hPa		•																
			250hPa													•		1			
		Temp	500hPa																		
			850hPa									-									•
		MSLP	MSL														-				
			250hPa																		
			500hPa																		
		Heights	700hPa																		
			1000hPa	•						▼						•					
≤			250hPa																		
	Anomaly Correlation	Vector	500hPa																		
	Coefficient	w mu	850hPa								-										
			250hPa																		
		Temp	500hPa													-					
			850hPa											•							
		MSLP	MSL																		

Day 1

ACC scores for HR1 worse than GFSv16 (initialization shock)

Days 3-10

- **Improvement:** tropics and winter hemisphere heights, wind speed, upper tropospheric temperature
- Worsening: low level temperatures

Mean Bias: 10m Wind Speed (DJF)

West CONUS

NATIONAL WEATHER SERVICE

East CONUS

Sign of biases same as in GFSv16. Wind speeds on average **lower** in HR1 than GFSv16

- Exacerbated underestimation in Western CONUS
- Reduced
 overestimation in
 Eastern CONUS

(The shifts are in the same direction for JJA)

Mean Bias: T2m (West Conus)

JJA

DJF

-CESV16

obs HP

Forecast Hour

NATIONAL WEATHER SERVICE

JJA

- **Reduced daytime warm** bias, improved diurnal cycle shape
- **Reduced diurnal range**

DJF

- **Exacerbated** nighttime cold bias
- Improved diurnal cycle shape

CAPE

HR1 minus GFSv16, JJA 2020

Larger CAPE in HR1 compared to in GFSv16

This is a move in the right direction but the magnitude of increase is insufficient.

NATIONAL WEATHER SERVICE

TC intensity and track error

TC track error

1 Absolute Track Error (nm) BASIN (AL 2020) Intensity Bias (knots) BASIN (AL 2020) 500 +V16R 2.0 -V16R • V17U V170 -0.5 + HR12 (mu 400 -3.0 N. Atl -5.5 300 -8.0 -10.5 200 -13.0 -15.5 Abs 100 -18.0 -20.5 12 108 120 132 144 156 0 12 24 # of 134 61 # of 134 61 125 113 113 Forecast Hour Forecast Hour

HR1 — Uncoupled HR — GFSv16

TC Intensity error

Track error

• Slightly increased for N. Atl, little change for W. Pac

Intensity error

- Both GFSv16 and HR1 underestimate intensity
- The intensity underestimation is clearly exacerbated in HR1. A not-surprising impact of coupling

Steps to improve for HR2

Summary

Benefits of HR1

- Improved MJO AC, amplitude, propagation speed (but propagation too slow)
- Improved ACC for heights, winds, upper tropospheric temperature in winter hemisphere and tropics
- Reduced West CONUS T2m warm bias in summer, improved diurnal cycle shape
- Reduced East CONUS 10m wind speed overestimation (but still positive bias)
- Increased CAPE (although insufficient)

Deficiencies of HR1

- Overestimation of total cloud cover in eastern tropical Pacific/Atlantic south of the equator and consequent underestimation of downward shortwave, leading to cold SST biases
- Warm SST biases along the equator in eastern Pacific/Atlantic
- Reduced ACC for temperatures at low atmospheric levels
- Exacerbated West CONUS 10m wind speed underestimation
- Exacerbated West CONUS T2m nighttime cold bias
- Exacerbated TC intensity underestimation

Steps to correct these deficiencies are planned for HR2

Contact: Lydia.B.Stefanova@noaa.gov

BACK-UP SLIDES

Bias scorecard: DJF

			N	.An	ieric	a		N. Hemisphere							S.	Hem	ispho	ere		Tropics						
		Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	
	101.0	1	3	5	0	8	10	1	3	5	0	8	10	1	3	5	0	8	10	1	3	3	0	ð	10	
	10hPa	_	_	<u> </u>	•	-	_	_	_	-	-	-	-										_	•	•	
	20hPa	•		•	•	•	•	•	•	•	•	•	•							•	_	•	•	•	•	
	50hPa		•	•					•	•	•	•	•								•	•	•			
	100hPa									▼	▼	▼				•	•	•	•	•	•	▼	▼			
Heights	200hPa						•															•	▼			
	500hPa			•																						
	700hPa			V	▼			•							•		-	-								
	850hPa			•																						
	1000hPa																									
	10hPa																									
	20hPa																			▼		-				
	50hPa	▼						•																		
	100hPa								•	-					•		•	•	•			▼	▼		•	
Wind	200hPa													•						▼		•	▼		•	
Speed	500hPa																									
	700hPa																				•					
	850hPa							•						•						V						
	1000hPa	•						•												V		▼				
	10hPa													▼												
	20hPa																									
	50hPa	▼	▼	▼	▼	•	-	▼	•	▼	▼		V													
	100hPa	V						V	V	V	V		V							▼	V	▼	V			
Temp	200hPa	-	V	-		-	-	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	•	•	
	500hPa													•								▼	▼	▼		
	700hPa	V						▼	▼	•	-	▼		▼	▼											
	850hPa						-							•	▼	•	▼	▼	•	▼					•	
	1000hPa							▼	•	•	V	V	-	V		▼				V			•			

▼	HR1 is worse than GFSv16 at the 99.9% significance level
•	HR1 is worse than GFSv16 at the 99% significance level
	HR1 is worse than GFSv16 at the 95% significance level
_	
	HR1 is better than GFSv16 at the 99.9% significance level
	HR1 is better than GFSv16 at the 99% significance level
	HR1 is better than GFSv16 at the 95% significance level
	No statistically significant difference between HR1 and GFSv16

DJF

Bias scorecard: JJA

		N. America							N. Hemisphere							Hem	isph	ere		Tropics						
		Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	
	10hPa																									
	20hPa					▼	+					▼	▼			▼	▼			▼		▼	▼			
	50hPa		▼						▼							▼	▼	-			▼	▼	V	•		
	100hPa		•					▼	•							▼	▼									
Heights	200hPa	V						•	•							▼	▼							▼		
	500hPa													▼		▼	▼	•					▼	▼	▼	
	700hPa		▼											▼		▼	▼									
	850hPa													▼		V				▼						
	1000hPa																									
	10hPa				•				▼																	
	20hPa		•	•						•												•				
	50hPa	•				▼		•						►						▼	▼	•	•	▼	•	
	100hPa										•	٠														
Wind	200hPa													►	▼					▼				▼		
Speed	500hPa																▼	▼			▼	▼				
	700hPa																	•		▼	▼					
	850hPa							▼	▼							▼				▼						
	1000hPa			▼				▼		▼	▼			►		▼	▼			▼	▼	▼	▼			
	10hPa																								-	
	20hPa													►						▼						
	50hPa	▼		▼	•	۲	٠		▼	▼	▼	▼	▼							V						
	100hPa		•	V			V			▼	•				V	•	▼	•		V		▼	•	•	▼	
Temp	200hPa	-	-			•	•															▼			▼	
	500hPa																▼									
	700hPa																				▼		▼	▼	▼	
	850hPa			▼																					-	
	1000hPa																						-			

▼	HR1 is worse than GFSv16 at the 99.9% significance level
•	HR1 is worse than GFSv16 at the 99% significance level
	HR1 is worse than GFSv16 at the 95% significance level
	HR1 is better than GFSv16 at the 99.9% significance level
•	HR1 is better than GFSv16 at the 99% significance level
	HR1 is better than GFSv16 at the 95% significance level
	No statistically significant difference between HR1 and GFSv1

VATIONAL WEATHER SERVICE

ACC: 500mb Geopotential Height

Southern Hemisphere

Difference from GFSv16 Note: differences outside the outline bars are 120 168 216 312 **Forecast Hou**

216

GFSv16 HR1

Apparent improvement in 500mb heights in NH/SH/Tropics, starting around day 3-5, although not consistently statistically significant

Building a Weather-Ready Nation // 19

NATIONAL WEATHER SERVICE

216

-0.100

ACC: 850mb Temperature

Southern Hemisphere

Forecast Hou

Forecast Hou

GFSv16

Statistically significant degradation for 850 mb Temperature, particularly in the summer hemisphere (SH in DJF, NH in JJA), and in the Tropics

NATIONAL WEATHER SERVICE

T2max, T2min (JJA)

GFSv16 Bias

-10 -5 -2 -1 -0.5 -0.2 -0.1 0.1 0.2 0.5 1 2 5 10

HR1 Bias

-10 -5 -2 -1 -0.5 -0.2 -0.1 0.1 0.2 0.5 1 2 5 10

HR1 minus GFSv16

-10 -5 -2 -1 -0.5 -0.2 -0.1 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5

0.2 0.5 1 2 5

Mostly lower Tmax Mostly higher Tmin

T2min

NATIONAL WEATHER SERVICE

T2max, T2min (DJF)

GFSv16 Bias

-10 -5 -2 -1 -0.5 -0.2 -0.1 0.1 0.2 0.5 1 2 5 10

-10 -5 -2 -1 -0.5 -0.2 -0.1 0.1 0.2 0.5 1 2 5 10

HR1 minus GFSv16

-10 -5 -2 -1 -0.5 -0.2 -0.1 0.1 0.2 0.5 1 2 5 10

-0.5 -0.2 -0.1 0.1 0.2 0.5 1 2

Mostly higher Tmax Mostly lower Tmin

NATIONAL WEATHER SERVICE

Ice Concentration, HR1 minus GFSv16

- Ice concentration (and thickness) differences between HR1 and GFSv16 are notable in both SH and NH, but particularly prominent in SH.
- This is a known issue from the Replay ICs for ice, its solution is being implemented by PSL

NATIONAL WEATHER SERVICE

Total Clouds, bias wrt CERES

- GFSv16 overestimates the total cloud cover over high latitudes, Indian ocean, Western equatorial Pacific, and south of the equator in the eastern tropical Pacific and Atlantic, as well as over Northern Africa. Cloud cover is underestimated over the remainder of oceans
- HR1 has less clouds than GFSv16, except for the eastern tropical Pacific and Atlantic, where it is cloudier

OLR, bias wrt NOAA-CDR

OLR reduced (bias improved) along the equator (SH in DJF, NH in JJA). OLR increased (bias improved) in Indian Ocean

OLR, bias wrt NOAA CDR

• Precip increased where OLR reduced, and vice versa

Surface upward shortwave radiation, bias wrt CERES

- Most prominent differences between GFSv16 and HR1: Sahara, Arabian Peninsula (deserts) and Antarctic/Greenland (permanent ice/snow), suggesting lower albedoes in HR1
- For the desert regions, this is an exacerbation of negative bias, while for the ice/snow regions it is an amelioration of positive bias

Surface upward longwave radiation, bias wrt CERES

- Upward longwave radiation at the surface: increased positive bias notable over Sahara, Arabian Peninsula (deserts), and in the Southern ocean in JJA reflecting warmer biases in these regions.
- The warmer biases over the Southern ocean in JJA stem from reduced ice extent (attributed to Replay initialization)

2-m Tmax, bias wrt CPC

- Deserts: Tmax is warmer (consistent with lower albedo)
- CONUS
 - Winter : slight reduction of cold bias in the eastern US, but still cool bias
 - Summer: reduced warm bias in central US, cool bias elsewhere (and most of Eurasia)

2-m Tmin, bias wrt CPC

- Deserts: Tmin is cooler (consistent with reduced cloudiness)
- CONUS
 - Winter Tmin: slight reduction of the warm bias (increased cold bias to the north)
 - Summer Tmin: slight increase in warm bias, except for the west coast

SST bias in weekly averaged forecasts of HR1

Winter case

Summer case

Warm bias enhanced in summer hemisphere. Bias increases from week 1 to 2 Warm bias (Kuroshio and south of Australia) and too cold bias in south tropical Atlantic in winter Overall, spatial structure similar to low-res prototype 8; differences largely due to ICs