

The Role of Convective-Scale Static Background Error Covariance in RRFS Hybrid EnVar for Direct Radar Reflectivity Data Assimilation over the CONUS

Yue Yang, Xuguang Wang, and Yongming Wang

Multiscale data Assimilation and Predictability (MAP) Lab

School of Meteorology, University of Oklahoma, Norman, OK, USA

Hybrid background error covariance

- Ø Previous studies using simple models hypothesized that the **hybridization** of a static covariance matrix with a flow-dependent ensemble-based covariance matrix can leverage the advantages of both (e.g., Hamill and Snyder 2000; Wang et al. 2007, 2009).
- \triangleright Many studies have confirmed the benefits of hybrid error covariance matrices for *large-scale* data assimilation (DA) and numerical weather prediction (NWP) (e.g., Buehner 2005; Wang et al. 2008, 2013; Kuhl et al. 2013; Clayton et al. 2013; Penny et al. 2015; Bowler et al. 2017).

- \triangleright While static covariance for large-scale DA has been established for a long while, additional considerations are needed to develop static covariance for *convectivescale* DA and NWP.
- Ø Wang and Wang (2021) developed a **convective-scale static covariance matrix** for direct radar reflectivity assimilation.
- Ø Wang and Wang (2021) has shown with the WRF-ARW model that the utilization of a convective-scale static covariance matrix in the hybrid EnVar can improve the convective-scale analysis and prediction compared to using the ensemble covariance alone.
- Ø In this study, the convective-scale static covariance for **FV3-LAM** is further developed and examined in the **RRFS** context.

- q The new **convective-scale static B** developed for **FV3-LAM** is employed to directly assimilate radar reflectivity using **RRFS** 3DVar and hybrid EnVar frameworks. The following questions are addressed:
	- Can we reduce the cost of **convective-scale static B** without degrading much of its performance?
	- What is the impact of using various **hybridization/weighting** between the ensemble-based and static covariances?
	- How is the hybrid EnVar compared to the 3DVar and pure EnVar?

Experiment design

 \triangleright Schematics of DA and forecast experiments

Part I: Cost reduction for convective-scale static B a. Calculation of static B for FV3-LAM

-
- Correlations in static **B** make physical sense **A Manual State State Correlations** in static **B** make physical sense

- - The horizontal length scales for hydrometeors are physically reasonable.

Part I: Cost reduction for convective-scale static B b. Physical transform coefficient selection

10

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Part I: Cost reduction for convective-scale static B b. Physical transform coefficient selection

A UFS Collaboration Powered by EPIC

influence on the analysis and short-term forecasts.

Part II: Impact of hybridization a. Hybridization: analysis

Ø Analysis until 2100 UTC

q **3DVAR vs EnVar**

• Although 3DVAR is much cheaper than EnVar, it outperforms EnVar in adding the missed storm in KS.

q **HYBRID**

- In HYBRID, the static/ensemble covariance weight is set to 30%/70%.
- HYBRID fits closer to observations than 3DVAR.
- Compared to EnVar, HYBRID performs better in adding the storm in KS.

Part II: Impact of hybridization a. Hybridization: forecasts

 \triangleright Forecasts from 2100 UTC

q **3DVAR vs EnVar vs HYBRID**

- Both 3DVAR and HYBRID can capture the storm in KS, but EnVar fails.
- Compared to 3DVAR, HYBRID better maintains the storm in KS.

Part II: Impact of hybridization a. Hybridization: analysis

Ø Analysis at 0000 UTC

q **3DVAR vs EnVar**

- 3DVAR outperforms EnVar in adding the storm in KS.
- EnVar produces less spurious weak reflectivity over the Northern Plains than 3DVAR.

q **HYBRID**

- HYBRID partially suppresses the spurious reflectivity compared to 3DVAR.
- The observed storm in KS is better added in HYBRID than in EnVar. Compared to EnVar, however, more spurious weak reflectivity exists in HYBRID.

Part II: Impact of hybridization b. Adaptive hybridization

q **HYBRID_CR**

- **Consistency ratio** (CR) is used as an indicator of ensemble quality to define the regions where the combination of static and ensemble covariances is required (Wang and Wang 2021).
- The way to assign weighting

CR \leq 1.0, \Rightarrow the weight of static **B** = 30% $CR \geq 1.0$, \Rightarrow the weight of static $B = 0.0$

Specifically, for each level,

gray shadings outside magenta contours => add static **B** from the bin of 'weak'

gray shadings inside magenta contours => add static **B** from the bin of 'strong'

Part II: Impact of hybridization b. Adaptive hybridization: forecasts

- HYBRID_CR produces less spurious weak reflectivity than HYBRID.
- **HYBRID** CR better captures the reflectivity cores than HYBRID.
- The improved forecast skills in HYBRID CR are well maintained.

UIFCW 2023 A UFS Collaboration Powered by EPIC

- v The **convective-scale static B** is further developed for **FV3-LAM** to directly assimilate reflectivity within the **RRFS** hybrid EnVar system.
- \cdot To reduce the cost, an approach to select and maintain the most critical cross-variable correlations is implemented to calculate convective-scale static **B**.
- \div Results on the impact of hybridization show that 1) 3DVar with the new static **B** outperforms pure EnVar in adding observed reflectivity; 2) Hybrid EnVar can get the advantages from both 3DVar and pure EnVar; 3) CR-based adaptive hybridization further increases forecast skills.
- Ongoing and future work Conduct further R&D on adaptive weighting for convective-scale DA.

