

The Role of Convective-Scale Static Background Error Covariance in RRFS Hybrid EnVar for Direct Radar Reflectivity Data Assimilation over the CONUS

Yue Yang, Xuguang Wang, and Yongming Wang

Multiscale data Assimilation and Predictability (MAP) Lab

School of Meteorology, University of Oklahoma, Norman, OK, USA

Q Hybrid background error covariance

- THE TO PERSON OF A CALLER AND A
- Previous studies using simple models hypothesized that the hybridization of a static covariance matrix with a flow-dependent ensemble-based covariance matrix can leverage the advantages of both (e.g., Hamill and Snyder 2000; Wang et al. 2007, 2009).
- Many studies have confirmed the benefits of hybrid error covariance matrices for <u>large-scale</u> data assimilation (DA) and numerical weather prediction (NWP) (e.g., Buehner 2005; Wang et al. 2008, 2013; Kuhl et al. 2013; Clayton et al. 2013; Penny et al. 2015; Bowler et al. 2017).

- While static covariance for large-scale DA has been established for a long while, additional considerations are needed to develop static covariance for <u>convective-</u> <u>scale</u> DA and NWP.
- Wang and Wang (2021) developed a convective-scale static covariance matrix for direct radar reflectivity assimilation.
- Wang and Wang (2021) has shown with the WRF-ARW model that the utilization of a convective-scale static covariance matrix in the hybrid EnVar can improve the convective-scale analysis and prediction compared to using the ensemble covariance alone.
- In this study, the convective-scale static covariance for FV3-LAM is further developed and examined in the RRFS context.

- □ The new **convective-scale static** B developed for **FV3-LAM** is employed to directly assimilate radar reflectivity using **RRFS** 3DVar and hybrid EnVar frameworks. The following questions are addressed:
 - Can we reduce the cost of convective-scale static B without degrading much of its performance?
 - What is the impact of using various **hybridization/weighting** between the ensemble-based and static covariances?
 - How is the hybrid EnVar compared to the 3DVar and pure EnVar?

Experiment design

Schematics of DA and forecast experiments

Part I: Cost reduction for convective-scale static B a. Calculation of static B for FV3-LAM

Correlations in static B make physical sense

- Horizontal length scales
 - The horizontal length scales for hydrometeors are physically reasonable.

Part I: Cost reduction for convective-scale static B b. Physical transform coefficient selection

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Part I: Cost reduction for convective-scale static B b. Physical transform coefficient selection

A UFS Collaboration Powered by EPIC

 Selecting and maintaining the critical physical transform coefficients have slight influence on the analysis and short-term forecasts.

 \geq

CREF

TEMP@lev0

Part II: Impact of hybridization a. Hybridization: analysis

Analysis until 2100 UTC

3DVAR vs EnVar

 Although 3DVAR is much cheaper than EnVar, it outperforms EnVar in adding the missed storm in KS.

HYBRID

- In HYBRID, the static/ensemble covariance weight is set to 30%/70%.
- HYBRID fits closer to observations than 3DVAR.
- Compared to EnVar, HYBRID performs better in adding the storm in KS.

Part II: Impact of hybridization a. Hybridization: forecasts

Forecasts from 2100 UTC

3DVAR vs EnVar vs HYBRID

- Both 3DVAR and HYBRID can capture the storm in KS, but EnVar fails.
- Compared to 3DVAR, HYBRID better maintains the storm in KS.

Part II: Impact of hybridization a. Hybridization: analysis

Analysis at 0000 UTC

□ 3DVAR vs EnVar

- 3DVAR outperforms EnVar in adding the storm in KS.
- EnVar produces less spurious weak reflectivity over the Northern Plains than 3DVAR.

) HYBRID

- HYBRID partially suppresses the spurious reflectivity compared to 3DVAR.
- The observed storm in KS is better added in HYBRID than in EnVar. Compared to EnVar, however, more spurious weak reflectivity exists in HYBRID.

Part II: Impact of hybridization b. Adaptive hybridization

□ HYBRID_CR

- **Consistency ratio** (CR) is used as an indicator of ensemble quality to define the regions where the combination of static and ensemble covariances is required (Wang and Wang 2021).
- The way to assign weighting

CR < 1.0, => the weight of static $\mathbf{B} = 30\%$ CR >= 1.0, => the weight of static $\mathbf{B} = 0.0$

Specifically, for each level,

gray shadings outside magenta contours => add static **B** from the bin of 'weak'

gray shadings inside magenta contours => add static **B** from the bin of 'strong'

Part II: Impact of hybridization b. Adaptive hybridization: forecasts

- HYBRID CR produces less spurious weak reflectivity than HYBRID.
- HYBRID CR better captures the reflectivity cores than HYBRID.
- The improved forecast skills in HYBRID CR are well maintained.

A UFS Collaboration Powered by EPIC

- The convective-scale static B is further developed for FV3-LAM to directly assimilate reflectivity within the RRFS hybrid EnVar system.
- To reduce the cost, an approach to select and maintain the most critical cross-variable correlations is implemented to calculate convective-scale static B.
- Results on the impact of hybridization show that
 1) 3DVar with the new static B outperforms pure EnVar in adding observed reflectivity;
 2) Hybrid EnVar can get the advantages from both 3DVar and pure EnVar;
 3) CR-based adaptive hybridization further increases forecast skills.
- Ongoing and future work Conduct further R&D on adaptive weighting for convective-scale DA.

