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Why Diabatic Heating?

● Subseasonal to seasonal predictability is largely due to the influence of slowly-varying 
boundary conditions

○ ENSO, other SST anomalies, soil moisture, etc. 

● Direct influence of these surface anomalies on the atmosphere is limited and local

● Remote influence is communicated via the upper atmosphere through diabatic heating 
anomalies 

○ E.g. Teleconnections or ‘atmospheric bridge’

● Diabatic heating is very difficult to observe directly 

○ E.g., satellite measurements of condensation 

○ Generally includes large observational uncertainties
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• However, the diabatic heating field  can be estimated through fundamental thermodynamics in 
conjunction with modern assessments of the full 3-dimensional state of the atmosphere
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Where is the potential temperature and  = dp/dt (material derivative of pressure p)

The left hand side can be evaluated every 6 hours 
from modern reanalyses to obtain 6-hourly 

estimates of at many pressure levels!
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Diabatic Heating Bias in UFS Prototype-P8

● Monthly mean diabatic heating diagnosed from January 01 starts for 2012-2018
○ Data obtained from https://registry.opendata.aws/noaa-ufs-s2s

● Assessed relative to monthly mean diabatic heating diagnosed from ERA5 for same dates

● Heating integrated over 9 layers
○ 1000-925; 925-850; 850-750; 750-650; 650-550; 550-450; 450-350; 350-200; 200-50
○ All results in units of W/m**2

https://registry.opendata.aws/noaa-ufs-s2s
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Contribution from Horizontal Advection Only
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Vertical Advection Component
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Contribution from Vertical Advection Only
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Conclusions

● Diagnosed diabatic heating closely matches ERA5 through most of the troposphere 
○ Significantly too negative in the Northern Hemisphere January storm-track regions
○ Largest differences in the upper troposphere to lower stratosphere (200 – 50 hPa)

● Time average vertical advection term is responsible for this difference
○ Minimal differences in horizontal advection term
○ Mean static stability in this region is too low? 
○ Dynamics of transients above the main storm track are faulty?

● Ongoing work
○ Further decomposition of vertical term

■ Requires longer runs than the 35 day Prototype runs
■ Analyzing seasonal runs performed on Frontera now

○ Impact of correcting bias on model fidelity and skill 



Additional Material
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Example: Seasonal response to seasonal heating
Heating and divergence for the 1982/83 El Niño 

DJF vertically integrated heating anomaly calculated from the residual method is 
collocated with the 200hPa divergence anomaly, as we would expect
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