Preliminary Analysis of Wintertime Diabatic Heating Biases in UFS Prototype-P8

David Straus, Erik Swenson, Chul-Su Shin, Benjamin Cash

George Mason University

With grateful acknowledgement of support from NA22OAR4590506

Why Diabatic Heating?

- Subseasonal to seasonal predictability is largely due to the influence of slowly-varying boundary conditions
	- ENSO, other SST anomalies, soil moisture, etc.
- Direct influence of these surface anomalies on the atmosphere is limited and local
- Remote influence is communicated via the upper atmosphere through diabatic heating anomalies
	- E.g. Teleconnections or 'atmospheric bridge'
- Diabatic heating is very difficult to observe directly
	- E.g., satellite measurements of condensation
	- Generally includes large observational uncertainties

• However, the diabatic heating field can be estimated through fundamental thermodynamics in conjunction with modern assessments of the full 3-dimensional state of the atmosphere

$$
\frac{\partial}{\partial t} + \vec{u} \cdot \vec{r} \Theta + \omega \frac{\partial}{\partial p} = \frac{1}{C_p} \left(\frac{p_0}{p} \right)^{\kappa} Q
$$

 $\theta = T$ $\Big|$ p_0 $\left(\frac{6}{p}\right)^{1}$ κ Wher $\omega = T \left(\frac{P0}{P}\right)$ is the potential temperature and $=p/dt$ (material derivative of pressure p)

> The left hand side can be evaluated every 6 hours from modern reanalyses to obtain 6-hourly estimates of at many pressure levels!

Diabatic Heating Bias in UFS Prototype-P8

- Monthly mean diabatic heating diagnosed from January 01 starts for 2012-2018
	- Data obtained from<https://registry.opendata.aws/noaa-ufs-s2s>
- Assessed relative to monthly mean diabatic heating diagnosed from ERA5 for same dates
- Heating integrated over 9 layers
	- 1000-925; 925-850; 850-750; 750-650; 650-550; 550-450; 450-350; 350-200; 200-50 All results in units of W/m^{**}2

Diabatic Heating Comparison

Close agreement at lowest levels

JN

 Ξ Q

OS-

0S

ERA5 Close agreement **maintained**

UFS

60W

 180

120W

120W

 $120E$

 $60E$

JN

 EQ

OS·

OS

450-300 mb

200-50 mb

Horizontal Advection Component

 Computer Computer Computer

Vertical Advection Component

$$
Q = \left\{ \begin{matrix} \text{Contribution from Vertical Advection Only} \\ \text{p} \left(\frac{P}{P_{\text{O}}} \right)^{\kappa} \left(\frac{\partial \theta}{\partial t} + \vec{u} \cdot \vec{\nabla} \theta + \omega \right) \frac{\partial \theta}{\partial P} \\ \text{Majority of the differences} \end{matrix} \right\}
$$

Conclusions

- Diagnosed diabatic heating closely matches ERA5 through most of the troposphere
	- Significantly too negative in the Northern Hemisphere January storm-track regions
	- Largest differences in the upper troposphere to lower stratosphere (200 50 hPa)
- Time average vertical advection term is responsible for this difference
	- Minimal differences in horizontal advection term
	- Mean static stability in this region is too low?
	- Dynamics of transients above the main storm track are faulty?
- Ongoing work
	- Further decomposition of vertical term
		- Requires longer runs than the 35 day Prototype runs
		- Analyzing seasonal runs performed on Frontera now
	- Impact of correcting bias on model fidelity and skill

Additional Material

Example: Seasonal response to seasonal heating Heating and divergence for the 1982/83 El Niño

DJF vertically integrated heating anomaly calculated from the residual method is collocated with the 200hPa divergence anomaly, as we would expect

With grateful acknowledgement of support from NA22OAR4590506