The Operational Use and Local Development of UFS MRW-GSI System at Central Weather Bureau of Taiwan

<u>Guo-Yuan Lien</u>¹, Ling-Feng Hsiao¹, Chang-Hung Lin¹, Feng-Ju Wang¹, Yu-Han Chen¹, Jen-Her Chen¹, Jing-Shan Hong¹, Daryl Kleist², Fanglin Yang², Vijay Tallapragada²

¹ Central Weather Bureau (CWB), Taipei, Taiwan

² Environmental Modeling Center, National Centers for Environmental Prediction, College Park, Maryland, USA

CWB Global NWP system

In collaboration with NCEP/EMC since 2016, CWB has adapted the NCEP GFS v15 as its new operational global NWP system

- 2019: Port GFS v15 (FV3GFS) model code
- 2020: Port GSI code (for GFS v15) and the complete data assimilation workflow
- 2021: Start semi-operational (near-real-time) run / research & performance tuning
- 2022: Research & performance tuning / Port to CWB's 6th-generation HPC (Fujitsu FX1000; ARMv8.2-A)
- 2023: Research & performance tuning / Operation → Taiwan Global Forecast System (TGFS) v1
- Continuous research & performance tuning

CWB TGFS v1 grid configuration

NCEP GFS v15 vs. CWB TGFS v1

CWB TGFS v1 is largely based on **NCEP GFS** v15.1, with the following main differences:

	NCEP GFS v15.1	CWB TGFS v1
Global grid setting	Det: C768L64 (13km) / Ens: C384L64 (25km) (zonal tile arrangement)	Det: C384L64 (25km) / Ens: C192L64 (50km) (Taiwan-centric tile arrangement)
Nested tile	N/A	Taiwan-nested tile (4.8 km; forecast-only; initialized from global DA analysis)
Ensemble size	80	32 + 32 (12-h time-lagged forecast)
Cumulus scheme	New SAS	Modified New SAS: Lin et al. (2022) [based on Kwon and Hong (2017)]
Cumulus scheme for the nested tile	N/A	New Tiedtke
Surface static data	NCEP fix data	Updated land-use, soil type (from WRF/MODIS), vegetation fraction (from EUMETSAT)
Gravity wave drag scheme		Fix a bug associated with air density
Planetary boundary layer scheme	K-EDMF	Fix a bug associated with Prandtl number
Assimilated observations	NCEP observation	NCEP observation - those not publicly available on NOAA NOMADS + CWB-processed conventional data (early run only) + CWB-processed COSMIC-2 RO + CWB-processed Himawari-8 AHI
Hybrid 4DEnVar time bin width	1 h	3 h
RO assimilation	Error specified using absolute values	Error specified using fractional values

NCEP GFS v15 vs. CWB TGFS v1

CWB TGFS v1 is largely based on **NCEP GFS** v15.1, with the following main differences:

	NCEP GFS v15.1	CWB TGFS v1
Global grid setting	Det: C768L64 (13km) / Ens: C384L64 (25km) (zonal tile arrangement)	Det: C384L64 (25km) / Ens: C192L64 (50km) / (Taiwan-centric tile arrangement)
Nested tile	N/A	Taiwan-nested tile (4.8 km; forecast-only; initialized from global DA analysis)
Ens Main information to I		32 + 32 (12-h time-lagged forecast)
^{Cu} 1) Lower resolution (25 vs. 13 km)		Modified New SAS: Lin et al. (2022) [based on Kwon and Hong (2017)]
^{Cu} 2) Fewer ensemble n	nembers (32(+32) vs.	New Tiedtke
Sui 80) Gra Gra		Updated land-use, soil type (from WRF/MODIS), vegetation fraction (from EUMETSAT)
		Fix a bug associated with air density
Planetary boundary layer scheme	K-EDMF	Fix a bug associated with Prandtl number
Assimilated observations	NCEP observation	NCEP observation - those not publicly available on NOAA NOMADS + CWB-processed conventional data (early run only) + CWB-processed COSMIC-2 RO + CWB-processed Himawari-8 AHI
Hybrid 4DEnVar time bin width	1 h	3 h
RO assimilation	Error specified using absolute values	Error specified using fractional values

TGFS v1 semi-operational test: 2021 2021/01/01 ~ 2021/10/21

Scorecard – Green/Red : TGFS is Better/Worse than CWBGFS

Verified against NCFP analysis

TGFS v1 semi-operational test: 2022 2022/01/01 ~ 2022/12/31

Scorecard – Green/Red : TGFS is Better/Worse than CWBGFS

Verified against NCFP analysis

TGFS v1 semi-operational test: 2023 1/01/01 ~ 2023/06/30

Scorecard – Green/Red : TGFS is Better/Worse than CWBGFS

Verified against NCFP analysis

TGFS v1 semi-operational test: Taiwan nested tile

Improvement of NSAS cumulus scheme

[Lin et al. (2022), based on Kwon and Hong (2017)]

Improvement of land processes

- 1. Update surface static data:
 - Land-use & soil type: WRF/MODIS
 - Vegetation fraction: EUMETSAT (much newer and higher-resolution than the GFS default static datasets)
- 2. Improve the land model: (based on some revisions in GFS v16)
 - Revise ground heat flux calculation over snow cover
 - Introduce vegetation impact on surface energy budget over urban areas

Scorecard (RMSE) – Green/Red : UPDATE is Better/Worse than CTRL 2022/12/01 ~ 2022/12/31

Improvement of GNSS RO observation error specification

Experiment	Observation error
CTRL	Absolute (GSI default)
FracErr	Fractional

RO absolute vs. fractional errors

Relation between NCEP GFS and CWB TGFS

Summary & Discussion

- In collaboration with NCEP/EMC since 2016, CWB has adapted the NCEP GFS v15 as its new operational global NWP system.
- Since the model component of the system has later become part of the UFS Medium-Range Weather (MRW) Application, the CWB may be regarded as one of the UFS MRW's early adopters for research and operations in the Western Hemisphere.
- The CWB-localized GFS (TGFS) has achieved a good forecast performance.
- Despite the thorough documentation of the GFS/UFS-related programs, to build the entire operational workflow of the system (including the hybrid EnVar data assimilation) in an environment outside NOAA computers (like CWB) is still not a trivial task, due to the complicated nature of the operational system.
 - However, we worked based on EMC's original operational code and did not watch closely the UFS community releases.
- Based on this CWB-localized system, we have established several collaborations with Taiwanese universities/ research institutes, so a "sub-community" in Taiwan may emerge.
- We greatly thank the UFS project and efforts spent by NOAA/NCEP to provide the provide the provide the provide that allow us to build and use a start-of-the-art NWP system at CWB.