A Wind-Wave-Current Data Assimilation Scheme for the 3D-Real Time Mesoscale Analysis

A NOAA-JTTI Project with NOAA EMC and NOAA CSL Collaboration

PIs: Malaquías Peña, Stylianos Flampouris, Enrique Curchitser, Leonel Romero, Manuel Pondeca Federal Co-Is: Jacob Carley, Daryl Kleist, Curtis Alexander, Isidora Jankov Collaborators: Guillaume Vernieres

Project Goals and Objectives

To advance the science and technology of data assimilation of surface wind, sea wave, and surface ocean current in the 3D-RTMA.

- Data QC for new marine and ocean observations
- Regional MOM6 ocean model
- Field-alignment on background fields
- Background error covariance wind-wave modeling
- Data assimilation scheme for mesoscale windwave-current fields

Datasets for validation of 3DRTMA

 Increase the robustness of the data quality control system for marine and ocean variables-especially the High-Frequency Radar and SatelliteAltimetry data,

Surface Currents

- Data a collected since 2006
- Surface current products
- 2 km and 6 km resolution
- No operational QC algorithm
- Validation data ongoing
- Pioneer array
- ADCP and SOFAR drifting buoy

Satellite altimetry data vs. in situ surface winds

42°N

41°N

40°N

42°N

41°N

Mitsopoulos et al., 2023

Tasks: Data Quality Control of New Observations

- IODA Software
- IODA Software to develop forward operator

SOFAR Moored and Drifting Buoy Network: wind, waves, Hs, Precipitation.

 \bigcirc

Objective 2. Surface ocean currents

- Stable version of RegMOM6 at 1/25th (4 km)
- Forcing: ERA-5 on the surface, Mercators' GLORYS for ocean open boundary conditions, NASA' TPXO for explicit tides.
- Period: 1993 to present.
- Yearly Perfect Restart
- All data is being post on THREDDS

Diagnosing consistency Wave-Currents

Impact of current field resolution and on H s

Diagnosing Data Impact

Significant Wave Height

Accumulated analysis increments over time. Analysis error reduction on each overpass.

HF-Radar vs. MOM6 currents

 Implement a field-alignment processing scheme for positional and amplitude error reduction in the background fields,

WEATHER PROGRAM OFFICE National Oceanic and Atmospheric Research

3DRTMA vs RTMA Wind Speed

Coastal and Open Ocean Wind Analyses

Bias correction Methods

80-m wind timeseries in the HRRR

Cold

Wind Ramps Statistics

Future Work

- RegMOM6 to be ported to the UFS framework
- Workflow management to integrate new software
- Background Error Covariance of wind-wave
- Metrics for Consistency
- Determine suitable configuration of RegMOM6