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Introduction

Primary objective: Implement novel DA methodology that is
immediately relevant for HAFS.

Specific topics:

New developments for fully cycled ensemble DA within HAFS

* Bias correction for radiance measurements (Knisely and
Poterjoy, 2023; UIFCW talk on Monday)

* Treating sampling error in high-resolution ensembles
(Kurosawa and Poterjoy, in progress)

* Non-Gaussian errors (Poterjoy 2022a,b; Kurosawa and
Poterjoy 2021,2023; UIFCW poster)

↗ Broadly relevant to all UFS applications.
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Combining particle filters with Var

One objective is to explore implications of replacing the EnKF
with LPF for modeling systems that run EnVar.

Motivation:

Most modeling systems run EnVar for practical reasons; e.g.,
use of a high-resolution deterministic “control.”

EnKF is typically used to update ensemble—to provide future
background error covariance for EnVar.

EnKF members are re-centered on EnVar analysis.
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Combining particle filters with Var

One objective is to explore implications of replacing the EnKF
with LPF for modeling systems that run EnVar.

Motivation:

x

i. Posterior tends to be closer to a
Gaussian than the prior.

ii. Re-centering posterior ensemble on
Var analysis is okay, as long as the
distribution is close to Gaussian.

← Var analysis alongside PF members
following assimilation.
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Combining particle filters with Var

One objective is to explore implications of replacing the EnKF
with LPF for modeling systems that run EnVar.

Motivation:

x

iii. Incremental 3DVar/4DVar can
solve moderately nonlinear DA
problems through an outer loop
(e.g., x on left).

iv. Posterior targeted by Var is more
consistent with PF than EnKF.

← Var analysis alongside EnKF members.
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Real-world impact of assuming Gaussian prior

EnKF Particle filter
(Gaussian DA) (Non-parametric DA)
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Combining particle filters with Var

DA comparisons:

“EnKF-Var” ← HAFS ensemble updated with EnKF and Var

“PF-Var” ← HAFS ensemble updated with LPF and Var

In both experiments, role of EnKF or LPF is to update 40
HAFS ensemble members about a variational analysis.

Verification:

10-member forecasts generated every 6 h for 2 weeks

Storm features verified using NHC Best Track data

Synoptic scale features verified using ERA5
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Verification (2 weeks of forecasts)
Track and intensity RMSEs for Laura

and Marco (2020)
Domain-average RMSEs

from ERA5

Currently testing with 2023 HAFS-A and HAFS-B;
preliminary results shows similar improvements with LPF-Var.
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Verification (2 weeks of forecasts)
Track and intensity RMSEs for Laura

and Marco (2020)
Domain-average RMSEs

from ERA5

LPF will soon be applied for hourly-updated GFS (FY23
WPO Innovations for Community Modeling Competition).
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Future directions

Flexibility provided by non-Gaussian data assimilation:

p(xt |y0:t) ∝ p(yt |xt)p(xt |y0:t−1),
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Future directions

Flexibility provided by non-Gaussian data assimilation:

p(xt |y0:t) ∝ p(yt |xt)p(xt |y0:t−1),

≈ p(yt |xt)
1

Ne

Ne∑
n=1

δ(x− xn
t ),
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Future directions

Flexibility provided by non-Gaussian data assimilation:

p(xt |y0:t) ∝ p(yt |xt)p(xt |y0:t−1),

≈ p(yt |xt)
1

Ne

Ne∑
n=1

δ(x− xn
t ),

∝
Ne∑

n=1
p(yt |xn

t )δ(x− xn
t ).

Large freedom exists in how we specify p(yt |xn
t ).
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Revisiting error assumptions for measurements

Assimilating obs with non-Gaussian, state-dependent errors.

Model III of Lorenz (2005) on
periodic domain

Model configuration supports
chaotic behavior

Characterized by Nx = 480
variables on periodic domain

Data Assimilation: iterative local
particle filter (Poterjoy 2022,
QJRMS; Poterjoy 2022, MWR)
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Revisiting error assumptions for measurements

Assimilating obs with non-Gaussian, state-dependent errors.

Observations: directly measure
every 8th variable at ∆t = 0.05

yi = xi + ϵ for i = 1, 2, . . . ,Ny
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0

0.1

0.2

0.3
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Revisiting error assumptions for measurements

Current approach for specifying p(yt |xn
t ):

Assume yt = H(xtruth
t ) + ϵt , and apply assumptions for

distribution of ϵt .
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Revisiting error assumptions for measurements

Current approach for specifying p(yt |xn
t ):

Assume yt = H(xtruth
t ) + ϵt , and apply assumptions for

distribution of ϵt .

For ϵn
t = yt − H(xn

t ),

p(yt |xn
t ) ≈ p(ϵn

t ),
≈ N (ϵn

t ; 0, Rt).
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Specifying likelihoods

A non-parametric estimate for p(yt |xn
t ):

1 Adopt a low-dimensional representation of yt and xt from
training data using nonlinear manifold learning method
(diffusion maps; Coifman and Lafon 2006).

2 Compute data-driven estimates of p(ϵt |xt) or p(yt |xt) using
kernel embeddings of conditional distributions (Song et al.
2013; Berry and Harlim 2017).

Results in a matrix representation of p(yt |xt): To specify
likelihood for a given member, find element of matrix that is
closest to current yt and xn

t .
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Lorenz example (training time = 40 cycles)
Posterior RMSEs with non-parametric p(ϵt |xt)

Best Gaussian estimate of p(ϵt |xt) (with QC)
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Long-term research implications

The flexibility of data-driven likelihoods opens new research
directions.

Another example application:

We observe the “square” of model variables without knowing
this function; i.e., H only selects state variables near obs.

The distribution for ϵt is still unknown.

All 5 parameters (θ) are unknown (control frequency,
amplitude, and coupling between large and small-scale waves).



12

Long-term research implications

The flexibility of data-driven likelihoods opens new research
directions.

Another example application:

We observe the “square” of model variables without knowing
this function; i.e., H only selects state variables near obs.

The distribution for ϵt is still unknown.

All 5 parameters (θ) are unknown (control frequency,
amplitude, and coupling between large and small-scale waves).

p(xt ,θ|y0:t) ∝ p(xt ,θ|y0:t−1)p(yt |xt ,θ).
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Long-term research implications
Posterior RMSEs and estimated likelihoods

Ensemble parameter estimate
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Summary

A new non-Gaussian data assimilation strategy is shown to
outperform conventional EnVar used for operational weather
prediction.

Early results are encouraging, but the full benefits of
non-Gaussian data assimilation still need to be explored.

As a motivating example, we show how likelihoods can be
estimated non-parametrically and used for data assimilation
with particle filters.
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Kernel embeddings of conditional distributions

We can represents likelihoods using kernel embeddings:

p(di |ŷj) =
M∑

k=1
µkjϕk(di)q(di)

See Song et al. (2009,2013)

µkj =
M∑

l=1
ψl(ŷ)[CC̃−1]kl ,

Clk = 1
N

N∑
j=1

ϕl(dj)ψk(ŷj),

C̃lk = 1
N

N∑
j=1

ψl(ŷj)ψk(ŷj).

where µkj coefficients determine
dependence across d and ŷ.
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Constructing marginals and basis

For q(d), adopt a kernel estimate:

Variable bandwidth kernel densities provide non-parametric
representation of marginal pdfs.

q(d) =
∑N

k=1 N(dk ,Bk), where Bk is a covariance.
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Constructing marginals and basis

For q(d), adopt a kernel estimate:

Variable bandwidth kernel densities provide non-parametric
representation of marginal pdfs.

q(d) =
∑N

k=1 N(dk ,Bk), where Bk is a covariance.

For basis functions, diffusion maps (Coifman and Lafon 2006)
is a reasonable choice:

Manifold learning method for represent data in
lower-dimensional space

Similar strategy applied by Berry and Harlim (2017)
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Constructing basis functions

Example: Data produced from Lorenz (1963) model

Model data Two-dimensional embeddings
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Constructing basis functions

Example: Data produced from Lorenz (1963) model

Observations Two-dimensional embeddings

↖ Unbiased Gaussian errors
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