

ž

औ

KS

四日

NOAA

NATIONAL

**WEATHER** 

SERVICE

Rahul Mahajan On Behalf of the Contributors of the Global-Workflow Project July 25, 2023

Unifying Innovations in Forecasting Capabilities Workshop – July 24-28, 2023 – Boulder CO



| گ      | Global Weather, Waves & Global Analysis   | GFS/GDAS v16.3         |         |        |           |                               |                  |                    |                     |           |            |                               |
|--------|-------------------------------------------|------------------------|---------|--------|-----------|-------------------------------|------------------|--------------------|---------------------|-----------|------------|-------------------------------|
|        | Global Weather & Wave Ensembles, Aerosols | GEFS v12.3             |         |        |           |                               |                  |                    |                     |           |            |                               |
|        | Global Ocean Analysis                     | GODAS v2               |         |        |           | GFS v1<br>GDAS v <sup>2</sup> | 7/<br>17/ C      | Coupled Reanalysis |                     |           |            | Medium Range &<br>Subseasonal |
|        | Short-Range Regional Ensembles            | SREF v7.1              |         |        |           | GEFS v1<br>GODAS              | <sup> 3/</sup> S | easonal Refo       | orecast             | GFS v     | 18/        | Morino 9                      |
| औ      | Regional Weather (Parent Domain)          | NAM v4.2               |         |        |           |                               |                  |                    |                     | SFS       | v14/<br>v1 | Cryosphere                    |
|        | Regional Weather (Parent Domain)          | RAP v5.1               |         |        |           |                               |                  |                    |                     |           |            | Seasonal                      |
|        | Global Ocean & Sea-Ice                    | RTOFS v2.3             |         |        |           |                               |                  |                    |                     |           |            | Jeasonal                      |
|        | Seasonal Climate                          | CDAS2 v1.2 / CFS v2.3  |         |        |           |                               |                  |                    |                     |           |            |                               |
| ☆<br>₩ | Regional Hurricane 1                      | HWRF v13.2             | 114501  | ſ      | HAFS v2   | Г                             | 114502           |                    | 4504                |           |            | Hurricane                     |
|        | Regional Hurricane 2                      | HMON v3.2              | HAFS V1 |        |           |                               | HAFS V3          |                    | AFS V4              |           |            |                               |
|        | Regional High Resolution CAM 1            | HiRes Window v8.1      |         | _      |           |                               |                  |                    |                     |           |            |                               |
|        | Regional High Resolution CAM 2            | NAM nests / Fire Wx v4 |         |        |           |                               |                  |                    |                     |           | Sho        | rt-Range Regional             |
|        | Regional High Resolution CAM 3            | HRRR v4.1              |         |        | RRFS      | 5 V1                          |                  |                    | RRFS v2/<br>WoFS v1 | /         | 5110       |                               |
|        | Regional HiRes CAM Ensemble               | HREF v3.1              |         |        |           |                               |                  |                    |                     | Regio     | nal A      | tmospheric Composition        |
|        | Regional Air Quality                      | AQM v6.1               | AQM v7  |        |           |                               |                  |                    |                     |           |            |                               |
|        | Regional Surface Weather Analysis         | RTMA / URMA v2.10      |         | 3      | DRTMA/URM | A v1                          |                  | 3DRTI              | /IA/URMA v          | 2         |            |                               |
|        | Atmospheric Transport & Dispersion        | HySPLIT v8.0           |         |        |           | HySPL                         | .IT v9           |                    |                     | HySPLIT v | 10         | Air Dispersion                |
|        | Coastal & Regional Waves                  | NWPS v1.4              |         |        |           |                               |                  |                    |                     |           |            | Coastal                       |
|        | Great Lakes                               | GLWU v2.0              |         |        |           |                               | GLWU             | v3                 |                     | GLWU v4   |            | Lakes                         |
| 兒陰     | Regional Hydrology                        | NWM v2.1               | NWM v3  |        |           |                               |                  | NWM                | l v4                |           |            | Hydrology                     |
|        | Space Weather 1 - WAM / IPE               | WFS v1.0               |         |        |           |                               |                  |                    |                     |           |            | Crease Weether                |
|        | Space Weather 2                           | ENLIL v1               |         |        |           |                               |                  | WFS v2             |                     |           |            | Space weather                 |
|        | EMC Verification System                   | -                      |         | EVS v1 |           |                               | EVS v2           |                    |                     | EVS v3    |            | Verification                  |



Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

# **Global-Workflow**

ž



- Global-Workflow is a system of components and scripts to operate the process for applications from end to end
- "Fully" automated with minimal user intervention for execution
- Must ensure each step runs at the correct time and data is passed between them properly



Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service



Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

# **Portability**

- WCOSS2 NWS Operational SuperComputer
- NOAA RDHPCS
  - Hera
  - Orion, Hercules (coming soon)
  - Jet\*
- NOAA ParallelWorks AWS (forecast-only)
- UWisc. SSEC S4\*

\* support from Dave Huber; pre-EPIC



ž

औ

R

四

# **Operability**

- **Applications:** GFS and GEFS (SFS coming soon)
- Supported modes: Forecast-only and cycled (reanalysis) and reforecast capabilities will be added as part of SFS development)
- Model development: ATM[AW], S2S[WA]
- **DA development**; Component DA and WCDA:
  - Atmosphere
    - GŚI-based [3DVar, Hybrid 3D/4D EnVar] JEDI-based; fv3-jedi [3DVar, EnKF]
    - •
  - Aerosols
    - JEDI-based; fv3-jedi [3DVar]
  - Ocean and Ice
    - JEDI-based; soca [3DFGAT, 3DEnVar]
  - Land Assimilation
    - JEDI-based; fv3-jedi [LETKFOI] ۲

12

ž

औ

K

四

### **Modularity**

- Ability to **run any component** of the workflow as a **standalone** job
  - **Observation pre-processing**
  - Post-processing, product generation
- **Machine-specific abstraction** to a single directory (env/) to enable portability of the workflow
- Affords flexibility to create **combinations of DA and components** for ٠ WCDA applications
- ٠
- Inline and offline product generation Inline and offline verification and validation
- Turns OFF operational and downstream product generation for development parallels
- **Refactoring** of older tasks and addition of new tasks follow:
  - Hierarchical design based on OOP
  - Break down of tasks into sub-tasks for efficient use of resources
  - Uses repeatable functions from wxflow a repository of tools for weather workflows



12

ž

औ

R

四



औ

x

# Testing

- Unit testing with pytests for python scripts
- Workflow end-to-end tests:
  - C48 S2S forecast-only
  - C48 atmosphere forecast-only
  - C96/C48 cycled DA
- Job-by-job testing development in progress

- Using Github Actions and self-hosted Github Runners
- Linters for shell and python scripts
- Automated Testing on Hera and Orion with every PR

🕄 Support coupled GEFS forecast, use mem000 for GEFS control 🗸 Cl-Hera-Passed Cl-Orion-Passed

#1755 opened 3 days ago by WalterKolczynski-NOAA • Approved 🔵 5 of 8 tasks

| eriments (C4 39m 59s • Clean-up 19s |                        |
|-------------------------------------|------------------------|
| riments (C96 2h 14m                 |                        |
| xpe                                 | xperiments (C96 2h 14m |







x

#### noaa-emc / wxflow / Y feature/tests







### ž

औ

R

四

12

# **Documentation**

| 🖀 Global-w<br>lates                                                                                             | vorkflow 😚 / Global W                                                                                                      |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Search docs<br>1. Contributing to the<br>2. Global Workflow Co<br>3. GFS Configuration<br>4. HPC Settings and H | Global Workflow<br>omponents<br>Help<br>Help                                                                               |  |  |  |  |  |  |  |
| wxflow 0.1.0<br>documentation                                                                                   | pypi v0.1.0 O pynorms passing O pytests passing                                                                            |  |  |  |  |  |  |  |
| Contributing<br>Maintaining                                                                                     | <b>Overview</b><br>wxflow is a Python library of common tool<br>NWP applications such as GFS, GEFS, and                    |  |  |  |  |  |  |  |
| API Reference V<br>Function index                                                                               | <ul> <li>logger: A generic program-wide logging</li> <li>yamitools: A YAML parser that allows loging variables.</li> </ul> |  |  |  |  |  |  |  |

/orkflow

C Edit on GitHub

#### Workflow

ow is the end-to-end workflow designed to run global configurations of medium range asting for the UFS weather model. It supports both development and operational ons. In its current format it supports the Global Forecast System (GFS) and the Global ecast System (GEFS) configurations

ng docs passing codecov 49%

(16.3.7]

00

used in weather workflows. It is designed to be used in RRFS workflows. Some of the tools included in wxflow are:

tool.

ading of nested yaml files and resolves environment

gov

ski@noaa.gov

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service







四日

# **User and Developer Contributions**

512



Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

### **Ocean DA [Guillaume Vernieres@EMC]**



ž

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

# Sealce DA [Guillaume Vernieres@EMC]



ž

औ

R

四

 $\square$ 

E S

### Aerosol DA [Cory Martin@EMC]

Aerosol Optical Depth (AOD) DA using VIIRS AOD observations

Global Mean and Stddv O-F statistics



Initial results show NMC estimates reduce standard deviations, while BUMP covariance results in lower mean differences.

12

ž

औ

R

四日



# Snow DA [Jiarui Dong@EMC, Clara Draper@PSL]

The current way GFS updates land surface states is behind our operational peers, this work (facilitated in part through our transition to JEDI) will help alleviate that!



ž

औ

K

四日

12



Snow DA can reduce RMSE of T2m from the model compared to ERA5 (above is difference in RMSE between a control run and with OI snow DA)

Improvement in snow depth from using OI DA (red)see Gichamo and Draper, 2022 (**DOI:10.1175/WAF-D-22-0061.1**) for vs control (black) with the UFS and JEDI (note at details on the OI snow DA coarse resolution)



20

Days since 20150901

30

40

50

10

60

40

### Summary

- global-workflow serves multiple needs for applications that are being developed as part of operational upgrades
- Making a lot of progress towards modernization of the code base as well as keeping the system running towards operational milestones
- Automated testing has helped with ensuring critical applications keep running with every update
- Engagement with the science development teams in developing capabilities of future needs has been beneficial towards planning of core capabilities in the global-workflow
- Much work is needed to make the system more agile, extensible, configurable and portable all the while retaining reproducibility and operational readiness



rahul.mahajan@noaa.gov

