Hurricane Analysis and Forecast System Development: Future Priorities

1Xuejin Zhang, 2Zhan Zhang, 2Avichal Mehra*, 2Vijay Tallapragada, 1S. G Gopalakrisnan, and 1Frank D. Marks, Jr.

Co-leads, Hurricane Application Integration Team

1NOAA/AOML, 2NOAA/NCEP/EMC

*Co-lead in 2020 and 2021

Acknowledgements

HFIP, UFS R2O project, IFAA, HSUP, DRA, JTTI, projects in CIMAS, and Base funding in EMC and AOML

Support from EMC and AOML
HAFS Development Approach

UFS-R2O Project and its applications follow the same approach:

- Develop innovations into operations
- Ensure lower Readiness Level (RL) research in the R2O pipeline
- Leverage other research and development programs and projects
- Transfer high RL research into operations
HAFS Development Priorities: After 2023 IOC

Moving nest
- Multiple storms
- Flexible nesting refinement
- Mass adjustment for fine topography consistency in blending zones
- Code optimization

Data assimilation
- New data ingestion
- Self-cycled DA
- Weakly Atmosphere/Ocean coupled DA
- JEDI transition

Ensemble capabilities
- Stochastic physics ensemble capability
- Ensembles on the Cloud (HERC project)

Physics
- PBL for TC application
- NOAH-MP transition and evaluation
- CP upgrade, transition, & evaluation
- Microphysics parameterization upgrade

Ocean and wave model transition
- HYCOM to MOM6 transition

Products
- Ensemble products
- Product fidelities
- 7-day forecast products

Workflow
- Improve efficiency
- Add more research options
HAFS Development Priorities: Future Innovations

- **Moving nest**
 - Global moving nest
 - Telescopic moving nest for LES capability

- **Data assimilation**
 - AI/ML technology for DA
 - Atmosphere/Ocean coupled DA: strongly vs. weakly
 - All-sky radiances: CRTM vs. RRTMG
 - New DA methodology: scale-aware, particle filter, etc.
 - DA and physics parameterizations interaction
HAFS Development Priorities: Future Innovations

- **Observations**
 - New observations
 - Observation strategy

- **Ensemble**
 - Initial condition perturbation
 - Ensemble for DA
 - Ensembles on the Cloud (HERC project)

- **Physics**
 - AI/ML for physics parameterizations
 - Sub-kilometer physics
 - Physics interactions

- **Ocean-Wave-Atmosphere coupling**
 - Three-way coupling
 - Coupling strategy
 - Ocean and wave model physics
 - Ocean and wave model initialization
Telescopic Nest Capability

HAFS Storm-Focused Domain

- ATM Parent
- ATM Nest
- HYCOM/MOM6 Ocean
- WWIII Wave
Multiple Moving Nest Capability

HAFS Basin-Focused Domain

- ATM Parent
- ATM Nest
- HYCOM/MOM6 Ocean
- WWIII Wave
HAFS Release Activities in FY24

<table>
<thead>
<tr>
<th>Task #</th>
<th>Activity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Multi-platform support (Cloud, RDHPCS, and External HPCS)</td>
<td>Ongoing</td>
</tr>
<tr>
<td>2</td>
<td>Scientific documentation</td>
<td>In preparation</td>
</tr>
<tr>
<td>3</td>
<td>User’s guide</td>
<td>In preparation</td>
</tr>
<tr>
<td>4</td>
<td>Tutorial and workshop</td>
<td>TBD</td>
</tr>
<tr>
<td>5</td>
<td>Code repository management</td>
<td>Ongoing</td>
</tr>
<tr>
<td>6</td>
<td>Special issue in Frontiers in Earth Science (Submission QR code:)</td>
<td>January 18, '24</td>
</tr>
<tr>
<td>7</td>
<td>Help desk</td>
<td>TBD</td>
</tr>
<tr>
<td>8</td>
<td>Public Release</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Acknowledgement of ALL Active HAFS Developers

<table>
<thead>
<tr>
<th>Atmospheric model dynamics/configurations/workflow</th>
<th>Ocean/Wave coupling through CMEPS</th>
<th>Data Assimilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCEP/EMC Avichal Mehra, Zhan Zhang, Bin Liu, Dusan Jovic, JungHoon Shin, Vijay Tallapragada, Biju Thomas, Jun Wang</td>
<td>NCEP/EMC Maria Aristizabal, Matthew Masarik, Jessica Meixner, John Steffen</td>
<td>NCEP/EMC Li Bi, Yonghui Weng, Ting Lei, Shun Liu, Daryl Kleist</td>
</tr>
<tr>
<td>AOML/HRD Xuejin Zhang, Ghassan Alaka, S. Gopalakrishnan, William Ramstrom</td>
<td>AOML/HRD Lew Gramer</td>
<td>AOML/HRD Jason Sippel, Sarah D. Ditchek</td>
</tr>
<tr>
<td>DTC Kathryn Newman, Mrinal Kanti Biswas, Linlin Pan</td>
<td>AMOL/PhOD Hyun-Sook Kim</td>
<td>OU Xu Lu, Xuguang Wang</td>
</tr>
<tr>
<td>GFDL Rusty Benson, Lucas Harris, Joseph Mouallem</td>
<td>ESMF Rocky Dunlap, Dan Rosen, Gerhard Theurich, Ufuk Turuncoglu,</td>
<td>UM/CIMAS Altug Aksoy, Dan Wu</td>
</tr>
<tr>
<td>Model Pre- and Post-processes</td>
<td>Atmospheric Physics</td>
<td>Verification/Evaluation</td>
</tr>
<tr>
<td>NCEP/EMC George Gayno, Hui-Ya Chuang, Bantwale Enyew, Qingfu Liu, Chuan-Kai Wang, Wen Meng, Lin Zhu, Rahul Mahajan</td>
<td>NCEP/EMC Jongil Han, Ruiyu Sun, Xu Li, Chunxi Zhang, Weiguo Wang, Fanglin Yang</td>
<td>NCEP/EMC Olivia Ostwald, Jiayi Peng, Hui Ya Chuang</td>
</tr>
<tr>
<td>GFDL Timothy Marchok</td>
<td>AOML/HRD Andrew Hazelton, Xuejin Zhang</td>
<td>NHC Michael Brennan, Jon Martinez, Ben Trabing, David Zelinsky, Wallace Hogsett</td>
</tr>
<tr>
<td>NHC Michael Brennan, Jon Martinez, Ben Trabing, David Zelinsky, Wallace Hogsett</td>
<td>UAH Xiaomin Chen</td>
<td>JTWC Brian Strahl, Levi Cowan</td>
</tr>
<tr>
<td>UMD Joseph Alan Knisely, Kenta Kurosawa, Jonathan Poterjoy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUNY/U at Albany Ryan Torn, Eun-Gyeong Yang</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Majority of the development supported through FY18/FY19/FY22 HSUP/DSUP, JTTI, and UFS-R2O Projects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UIFCW 2023

A UFS Collaboration Powered by EPIC