
Building and Running the
Containerized Global-Workflow

October 11, 2024

Mark Potts

Overview
Motivation
● Eliminates the need for users to build spack-stack
● Designed to provide a Tier-1-like interface for building software
● Greatly simplify the process of porting the Global-workflow to generic systems
● Allow non-NOAA researchers to work directly with UFS applications

Specifics
● Container based on spack-stack version 1.8.0
● Can be built from Docker images or downloaded directly from s3
● Provides an “externalize.sh” script that creates stand-alone wrappers that can be used on the

host platform as if they were built natively
● This is a work in progress (not everything works)

Assumptions

● Some things are required on the host system
● Host has intelmpi or mpich installed (srun –mpi=pmi2 can work in place of

mpiexec)
● Singularity or Apptainer is installed on your system
● Several hundred GB of free disk space
● At least 8 cores available for computation
● Preferred

○ slurm installed (rocoto_fake_slurm is an option)
○ rocoto installed (can be built in user space)
○ virtual python environment or ability to install python packages as needed

Getting the container

● Build it on your local machine using singularity/apptainer

singularity build --force ubuntu22.04-intel-ufs-env-v1.8.0.img \
docker://noaaepic/ubuntu22.04-intel-unified:v1.8.0

● Copy it from Tier-1 platform
orion -- /work/noaa/epic-ps/role-epic-ps/containers
hera -- /scratch1/NCEPDEV/nems/role.epic/containers
jet -- /mnt/lfs4/HFIP/hfv3gfs/role.epic/containers
noaacloud -- /contrib/EPIC/containers
gaea – /gpfs/f5/epic/world-shared/containers
derecho -- /glade/scratch/epicufsrt/containers

● Download it from s3
aws s3 cp --no-sign-request \
s3://noaa-ufs-gdas-pds/spack-stack-singularity-images/ubuntu22.04-intel-ufs-env-v1.8.0.img

Getting the data

● Download the fix files needed from aws
aws s3 sync --no-sign-request s3://noaa-nws-global-pds/fix fix
(these are huge, but not all are required)

● Download the ICSDIR data for C48 runs
mkdir -p ICSDIR/C48C48mx500/20240610
cd ICSDIR/C48C48mx500/20240610
aws s3 sync --no-sign-request
s3://noaa-nws-global-pds/data/ICSDIR/C48C48mx500/20240610/gfs.202
10323 gfs.20210323

● Clone global-workflow
git clone --recursive https://github.com/noaa-emc/global-workflow

● download and untar patch
git clone
https://github.com/NOAA-EPIC/global-workflow-patch.git
cd global-workflow
tar xvfz ../global-workflow-patch/gw-patch.1.8.0d.tar.gz

● Shell into the container
export img=PATH-TO/ubuntu22.04-intel-ufs-env-v1.8.0.img
singularity shell -e -s /bin/mybash $img

● Set variables and run build script
export HOMEgfs=$PWD
export MACHINE_ID=container
source versions/build.container.ver
module use $PWD/modulefiles
module load module_base.container
cd sorc && ./build_all.sh -g -j 8

Building the workflow

Prepare containerized executable to run on host system
● Run the link_workflow script in global-workflow/sorc

export FIX_DIR=PATH_TO_DOWNLOADED_FIX_FILES
./link_workflow.sh

● Move the global-workflow/exec directory
cd .. && mv exec container-exec

● Create externalized wrapper scripts for all G-W executables
/opt/container-scripts/externalize.sh -e $PWD/exec container-exec/*

● Externalize several other required scripts/executables
/opt/container-scripts/externalize.sh -e $PWD/exec/bin $WGRIB2
/opt/container-scripts/externalize.sh -e $PWD/exec
$prod_util_ROOT/bin/*

● Exit the container shell

● Open up /global-workflow/parm/config/gfs/yaml/defaults.yaml
FHMAX_GFS: 12
DO_TRACKER: “NO”
DO_GENESIS: “NO”
DO_METP: “NO”

● Open up global-workflow/workflow/hosts/container.yaml
DMPDIR: '/data2/${USER}'
HOMEDIR: '/home/${USER}'
STMP: '/data2/${USER}'
PTMP: '/data2/${USER}'

● Configure slurm for your site
SCHEDULER: slurm
ACCOUNT: ''
QUEUE: ''
QUEUE_SERVICE: ''
PARTITION_BATCH: ''
PARTITION_SERVICE: ''
RESERVATION: ''
CLUSTERS: ''

Edit defaults and host particulars

● Set MACHINE_ID to “container”
export MACHINE_ID=CONTAINER

● Load modules for intelmpi
● Set path to include exec

export PATH=$PATH:/data2/sandbox/global-workflow/exec
● Set wgrib2_ROOT

export wgrib2_ROOT=/data2/sandbox/global-workflow/exec
● Run setup_expt.py for forecast-only

./setup_expt.py gfs forecast-only --start cold --pslot c48_atm --app
ATM --resdetatmos 48 --idate 2021032312 --edate 2021032312 --comroot
/data2/comroot --icsdir=/data2/ICSDIR/C48C48mx500/20240610 --expdir
/data2/expdir

● Run setup.xml script
./setup_xml.py /data2/expdir/c48_atm

● cd to expdir and start workflow with rocotorun
rocotorun -w c48_atm.xml -d c48_atm.db -v 10

Set up experiment

● Extra python modules to install
pip install python-dateutil
pip install xarray

● No slurm?
○ Just copy and run the scripts produced directly
○ Use rocoto_fake_slurm from https://github.com/ufs-community/ufs-srweather-app

■ ufs-srweather-app/ufs/rocoto_fake_slurm
● Don’t need the full fix directories from s3.

aer -> fix/aer/20220805 am -> fix/am/20220805
chem -> fix/chem/20220805 cice -> fix/cice/20240416
cpl -> fix/cpl/20230526 datm -> fix/datm/20220805
gsi -> fix/gsi/20240208 lut -> fix/lut/20220805
mom6 -> fix/mom6/20240416 orog -> fix/orog/20231027
sfc_climo -> fix/sfc_climo/20220805 ugwd -> fix/ugwd/20240624
verif -> fix/verif/20220805 wave -> fix/wave/20240105

Potential issues

https://github.com/ufs-community/ufs-srweather-app

● Check overall status of workflow
rocotostat -w c48_atm.xml -d c48_atm.db -v 10

● Rewind a step that failed
rocotorewind -w c48_atm.xml -d c48_atm.db -v 10 -c 202103231200 -t gfs_fcst_seg0

● Check to see status details of a step
rocotorecheck -w c48_atm.xml -d c48_atm.db -v 10 -c 202103231200-t gfs_fcst_seg0

● Force the completion of a step
rocotocomplete -w c48_atm.xml -d c48_atm.db -v 10 -c 202103231200-t gfs_fcst_seg0

Useful rocoto commands

