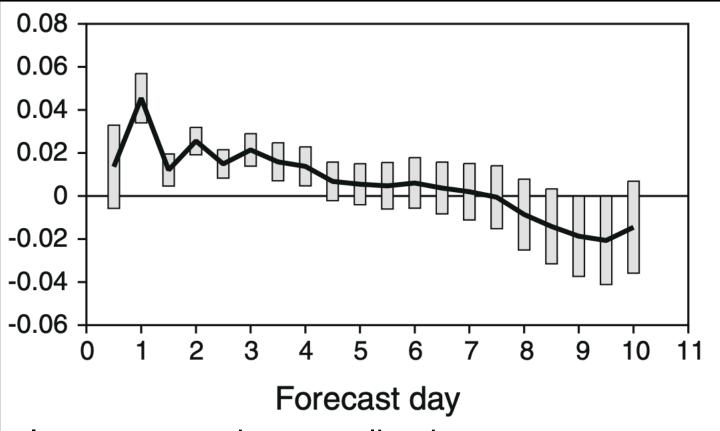
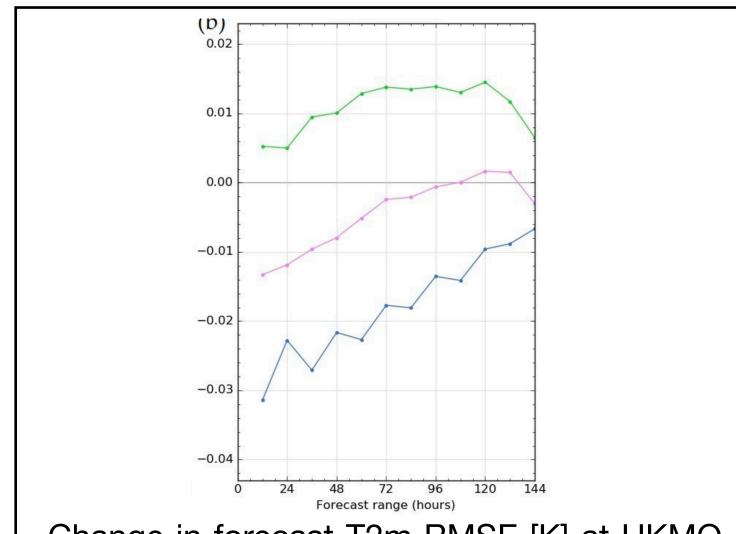
Land DA for NOAA's Global NWP

Clara Draper¹, Mike Barlage², Jiarui Dong³, Tseganeh Gichamo³, Cory Martin², Cathy Thomas², Youlong Xia, Yuan Xue³.


- 1. NOAA PSL, Boulder, CO.
- 2. NOAA EMC, College Park, MD.
 - 3. Lynker at NOAA EMC.

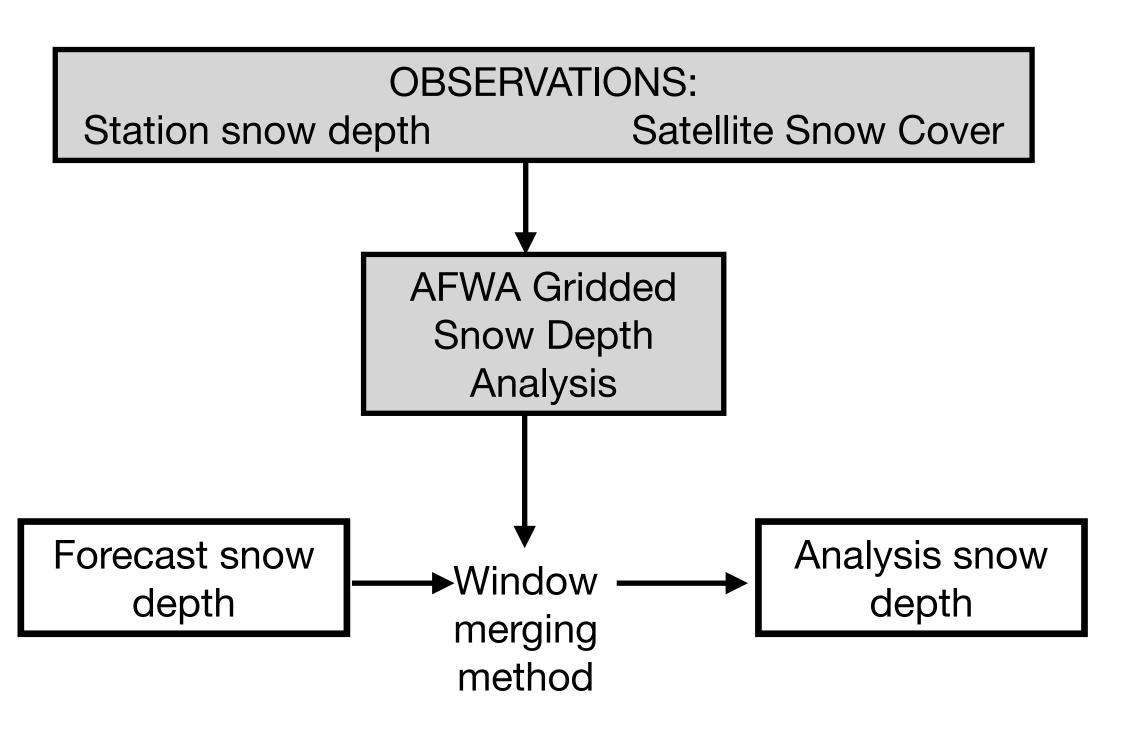
UIFCW25, Boulder, September, 2025.

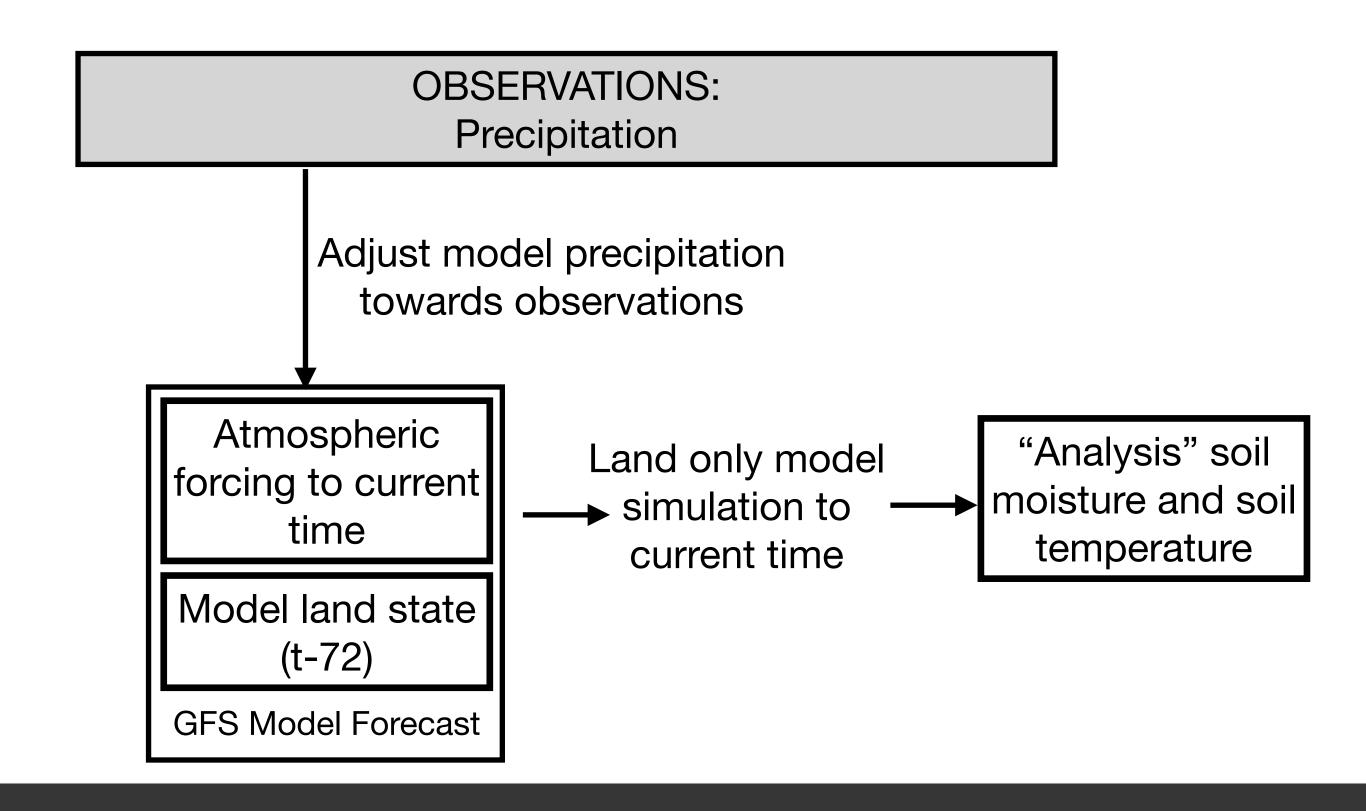


Land DA in NWP

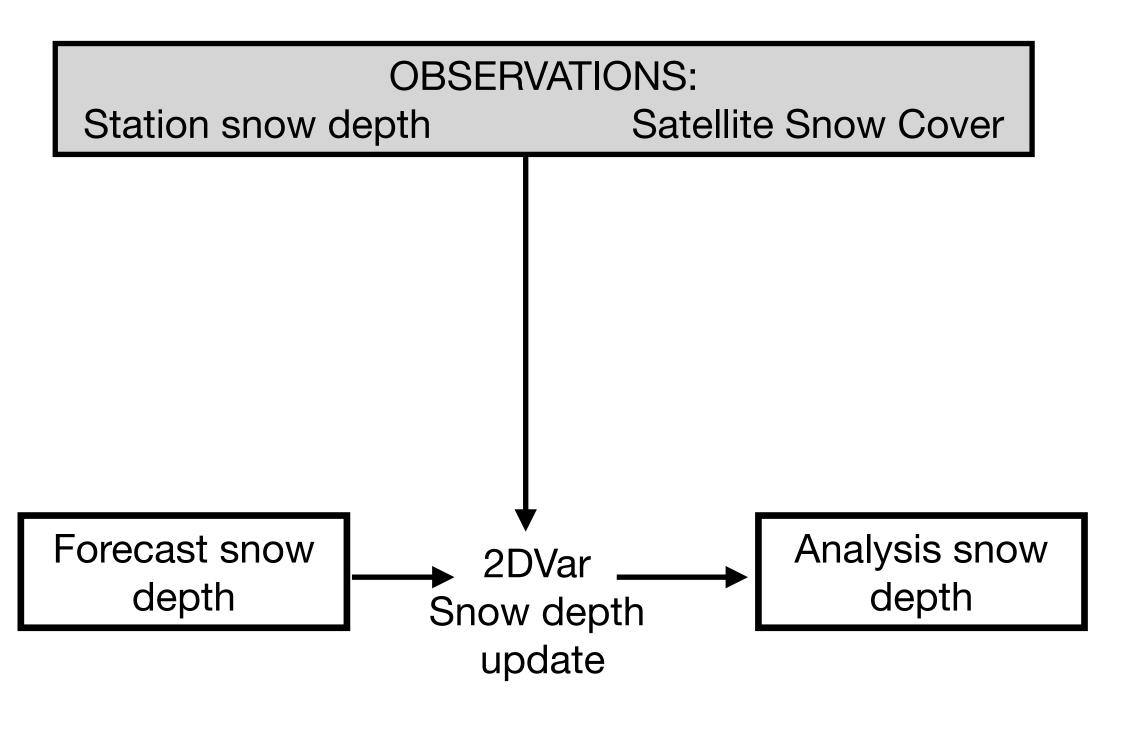
- All major international NWP centers use land DA to improve initialization of their land states
 - Demonstrated to lead to improved NWP forecasts
- For global NWP, NOAA's land DA is very far behind international practice
- Other centers use land DA to constrain the model:
 - Soil moisture (from T2m, q2m, and satellites)
 - Soil temperature (from T2m, q2m)
 - Snow amount (from station and satellite obs)

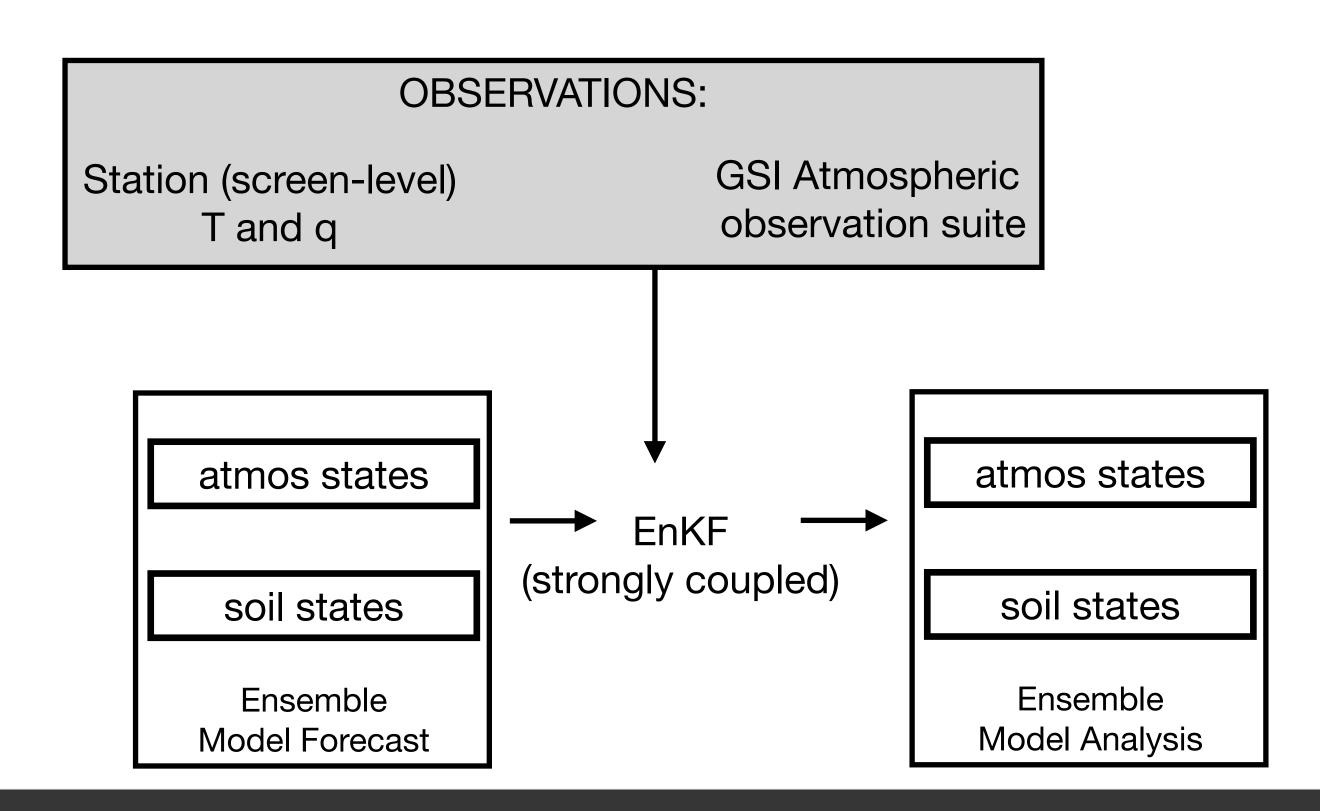
Improvement in normalized root mean square forecast 1000 hPa geopotential error [-] at ECMWF, from updating the snow depth analysis (de Rosnay et al, 2014).




Change in forecast T2m RMSE [K] at UKMO due to the SEKF soil moisture analysis (three different versions shown; Gomez et al, 2020).

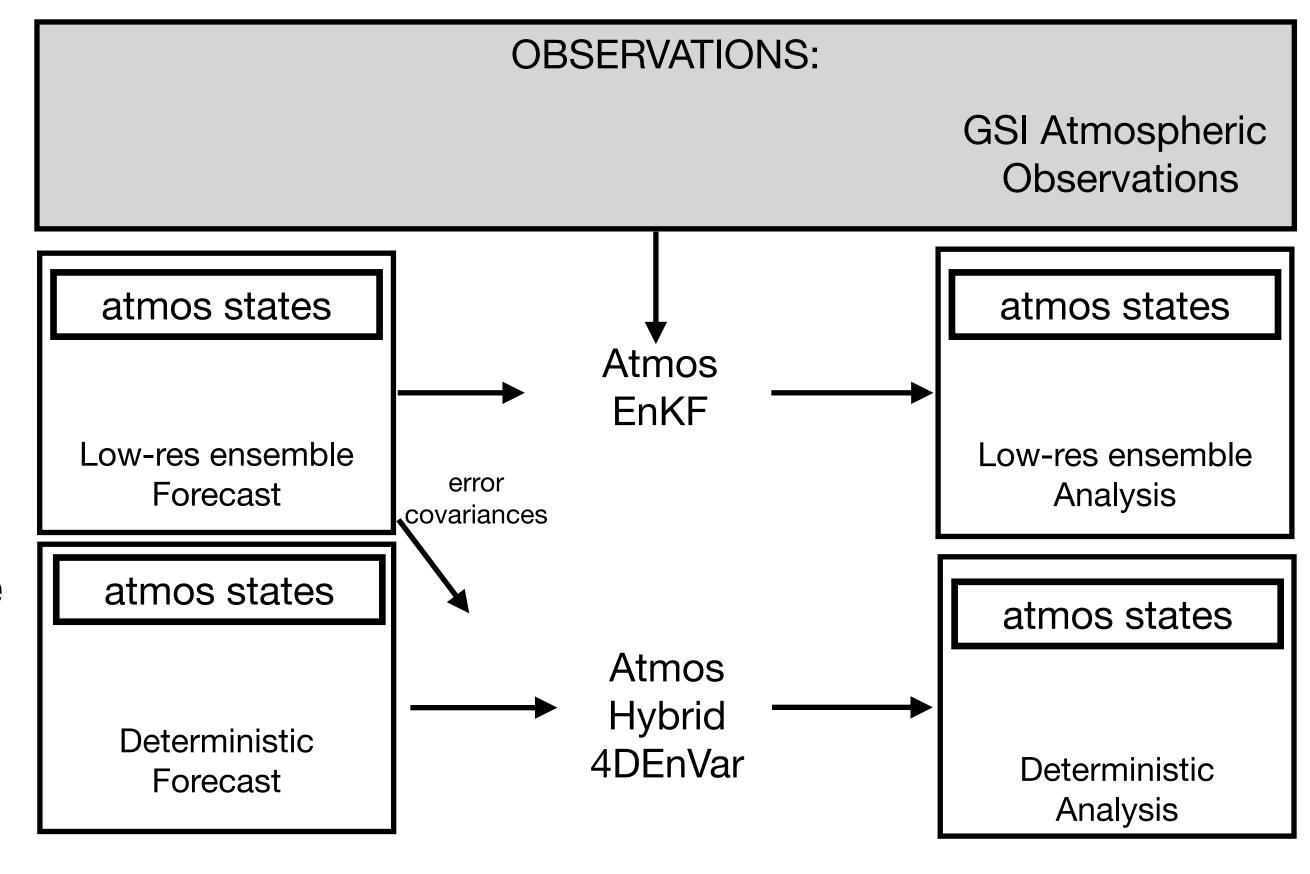
Land DA in NOAA's GFSv16


- Simple snow depth analysis
- No soil moisture or soil temperature analysis (instead retrospective correction with observed precipitation)



Land DA in NOAA's GFSv17 (sched. 2026)

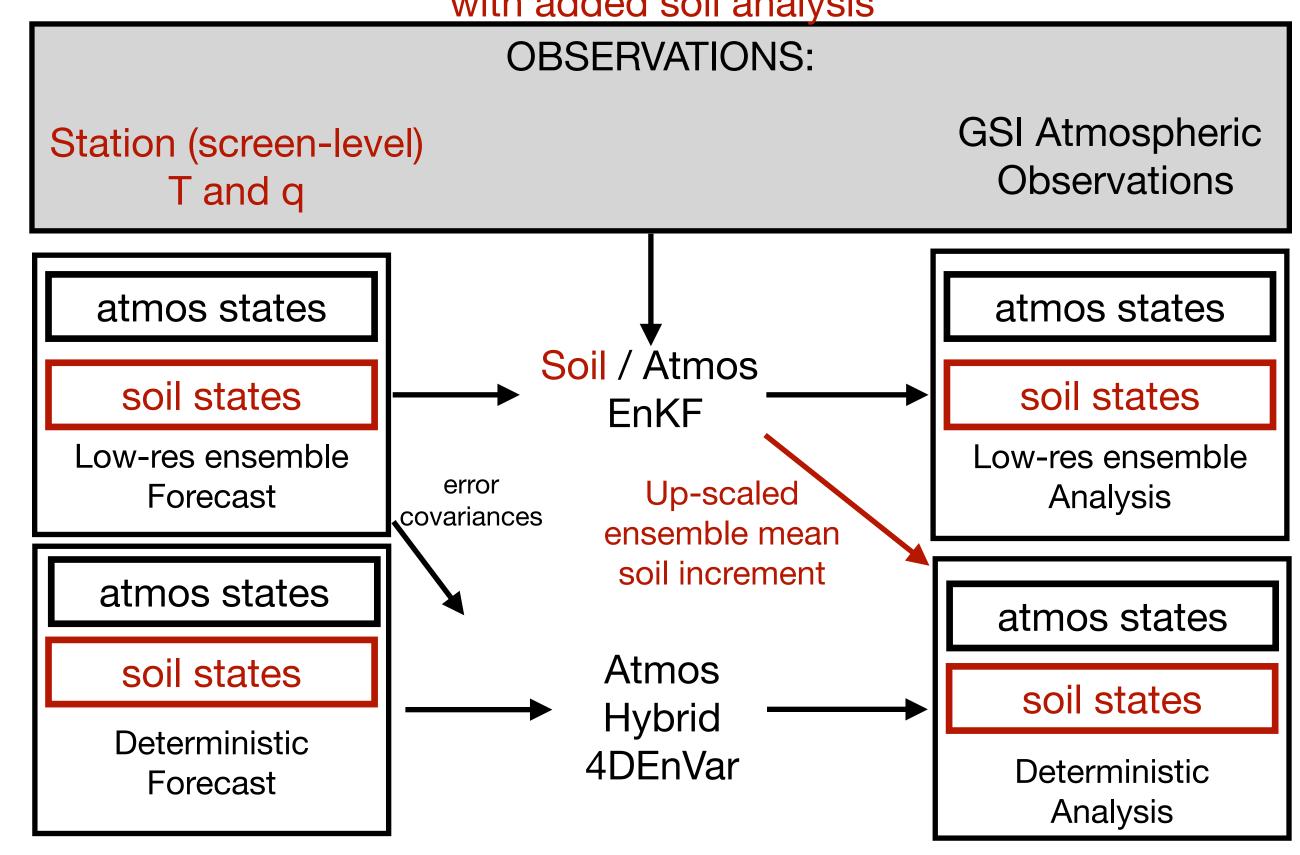
- GFSv17 will include a major upgrade to our land DA
 - Upgrade snow DA to directly assimilate observations and use JEDI
 - Introduce first soil moisture and soil temperature analysis



GFSv17 Soil Moisture and Soil Temperature Analysis

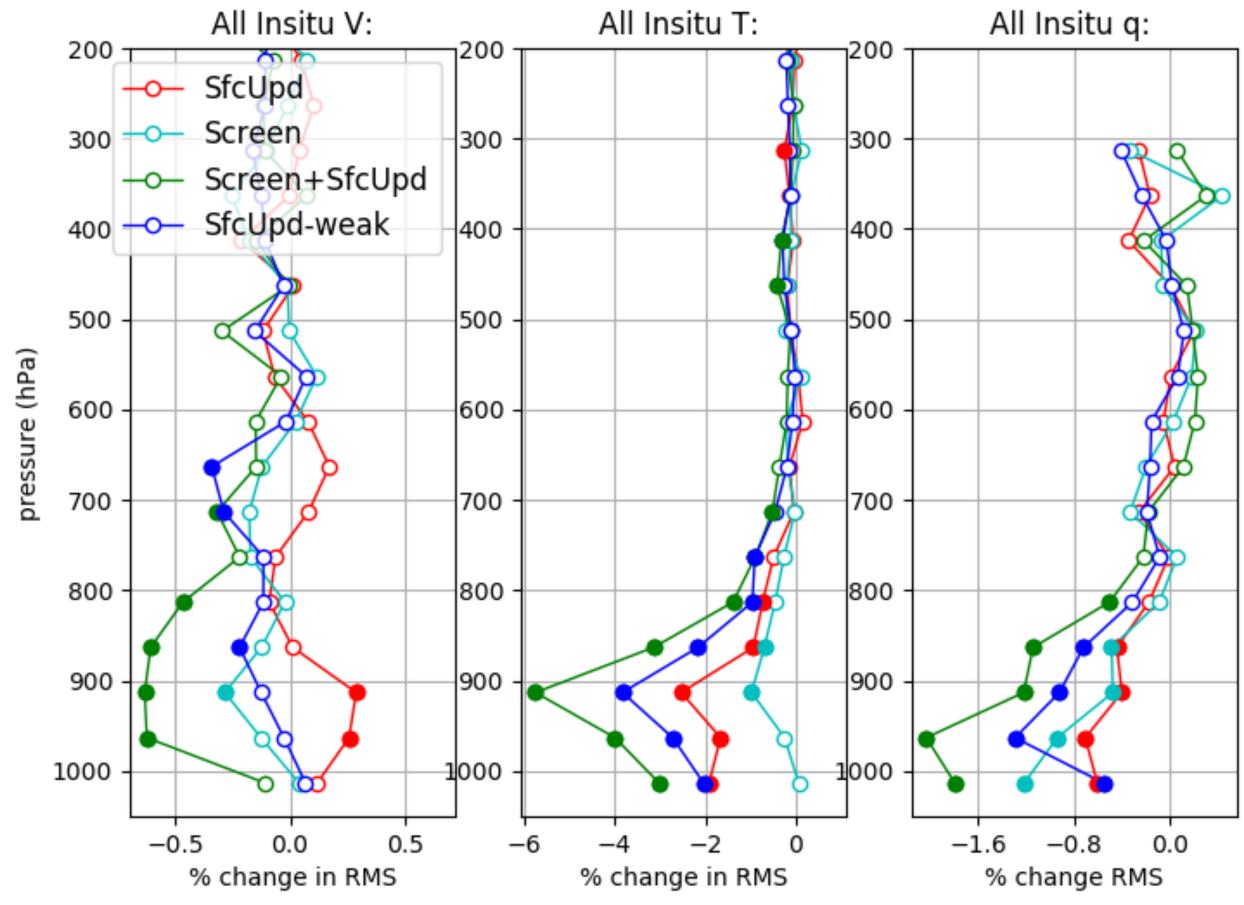
GFSv17 Soil Moisture and Soil Temperature Analysis

- At other NWP centers, the soil analysis is done with different DA methods to the atmospheric analysis
 - Relatively simple DA methods (SEKF, OI)
 - Initial soil analysis schemes were all based on assimilation of screen-level T and q
 - Some centers later added satellite soil moisture information
- We instead opted to use the more advanced DA method that are being applied to the atmosphere for the new soil analysis
 - Initially, using the EnKF component only for the soil moisture and soil temperature analysis
 - Also adding assimilation of screen-level T and q observations (not currently used in the GFS)


GSI Hybrid 4DEnVar or Atmospheric DA

GFSv17 Soil Moisture and Soil Temperature Analysis

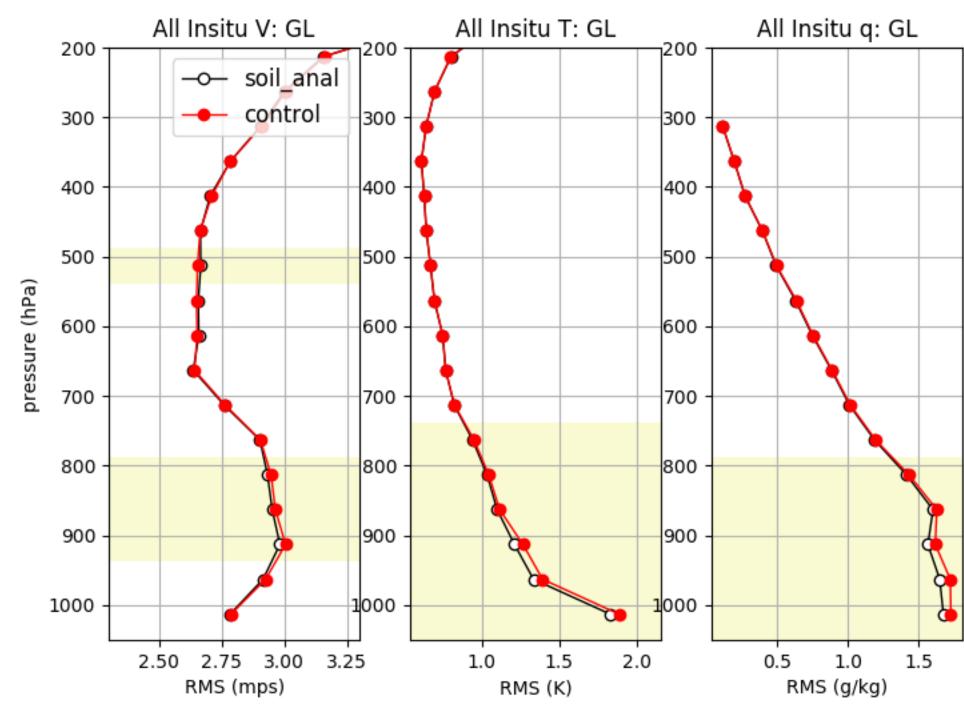
- At other NWP centers, the soil analysis is done with different DA methods to the atmospheric analysis
 - Relatively simple DA methods (SEKF, OI)
 - Initial soil analysis schemes were all based on assimilation of screen-level T and q
 - Some centers later added satellite soil moisture information
- We instead opted to use the more advanced DA method that are being applied to the atmosphere for the new soil analysis
 - Initially, using the only the EnKF component of the GSI Hybrid 4DEnVar for the soil moisture and soil temperature analysis
 - Add mean ensemble increment to the deterministic member
 - Also adding assimilation of screen-level T and q observations (not currently used in the GFS)


GSI Hybrid 4DEnVar or Atmospheric DA, with added soil analysis

Coupled EnKF Soil Analysis Experiments

- Early experiments with the GSI atmospheric EnKF (no deterministic member, of Var update) show improvement in low-level O-F from adding the new soil analysis:
 - Red: Improvement from assimilating screen-level T and q observations into the atmosphere
 - Aqua: Improvements from including the soil states in the analysis
 - Green: Largest improvements from doing both (strongly coupled land/ atmos EnKF, with addition of screenlevel obs) - selected option for GFSv17

Percentage change in RMS O-F from different coupling options for the atmos and soil EnKF


Full circle = significant difference from Control

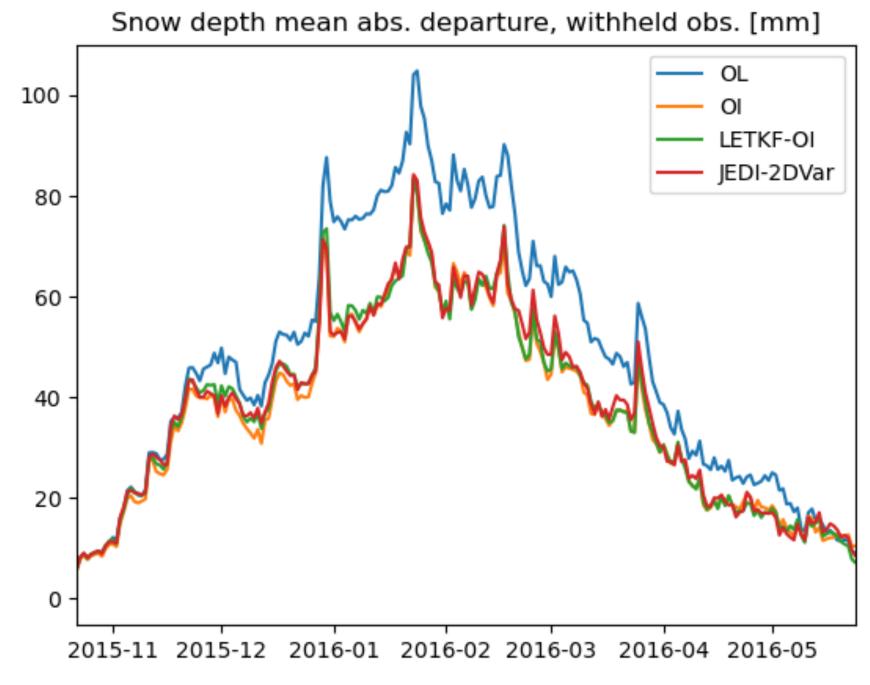
Draper et al. QJRMS (2025)

GFSv17 Soil Analysis

- Recall: atmos DA is Hybrid 4DEnVar
 - Variational/hybrid methods not well established for land DA, but are theoretically quite attractive
 - For GFSv17 using interim solution of adding the mean EnKF increment to the deterministic member while we develop a hybrid/variational soil analysis
- Currently testing forecast impact of above design in a prototype version of GFSv17
 - C384/C192 (~12 km)
 - May 2022 -> October 2022
 - 10 day forecasts launched every 5 days

20220501 - 20220523 RMS O-F

Above: first month of the soil analysis experiments, show significant improvement in low-level T and q O-F at analysis time


Experiments run by Tseganeh Gichamo

GFSv17 Snow Depth Analysis

2DVar Snow Depth Analysis

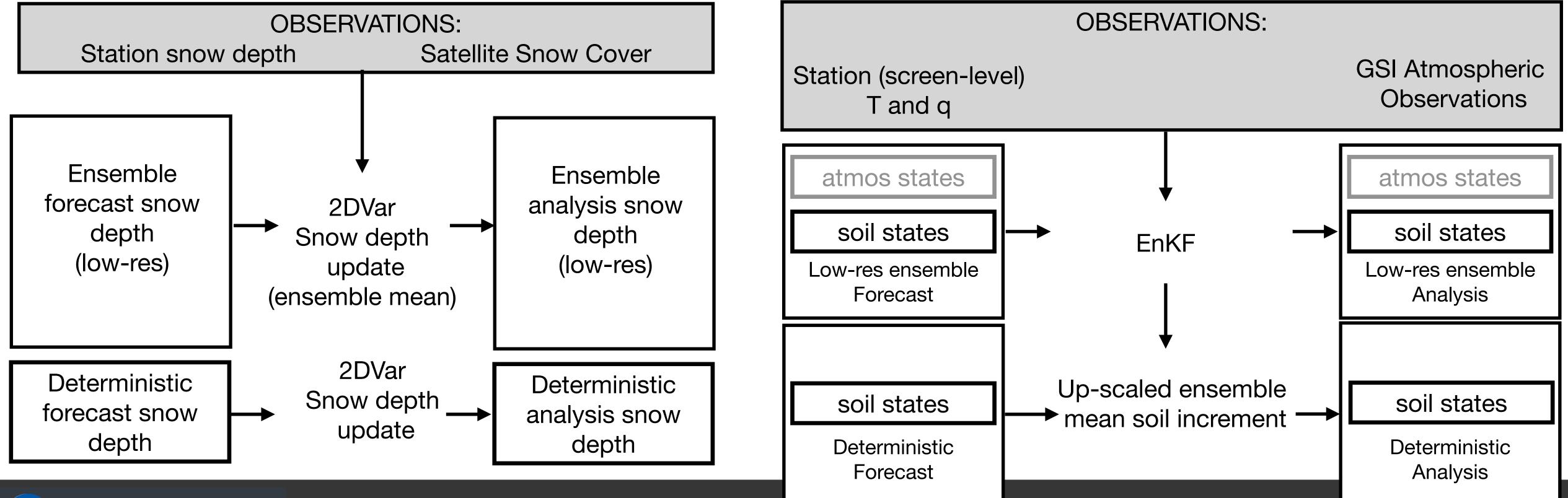
- Using 2DVar to update model snow depth from station snow depth and satellite snow cover observations
 - Implemented in JEDI
 - B matrix covariances calculated from variation (horizontal, vertical) in model surface terrain
 - Based on optimal interpolation schemes used elsewhere
 - In GFSv17, 2DVar is applied separately to the deterministic member, and to the ensemble mean

Above: 2DVar snow DA (red) improves the model snow depth compared to no snow DA (blue).

Improved NWP Forecasts from Snow DA

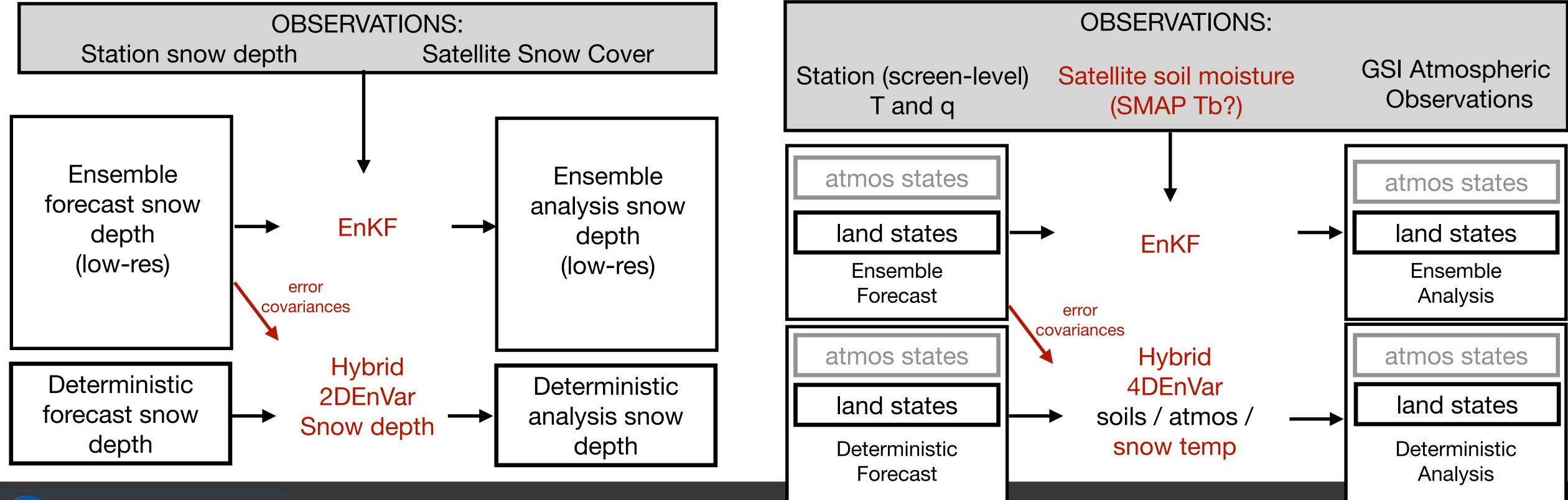
						neric						isph						isph						pics	_	
			Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10
		250hPa	_					10	_			Ū		10	_				Ü	10	_			Ü	Ť	10
		500hPa																								
	Heights	700hPa							•																	
																										\vdash
		1000hPa							•						•											
Anomaly Correlation	Vector	250hPa																								
Coefficient	Wind	500hPa 850hPa																								
-		250hPa																								
	Т	500hPa																								
	Temp	850hPa							_																	
}) (CL D								•																	
	MSLP	MSL							•						•											
		10hPa																								
		20hPa																			_	\vdash				
		50hPa																								
	Heights	100hPa																								
	Heights	200hPa																							*	
		500hPa																-			\vdash	\vdash				
		700hPa							A												-	_				
		850hPa							A														•			
		1000hPa							•						•								•			
		10hPa						•																		
		20hPa																			•					
		50hPa													•											
	Vector	100hPa																								
RMSE	Wind	200hPa																								
	Willa	500hPa																								
		700hPa																								
		850hPa																								
		1000hPa																								
		10hPa																		\vdash	-					-
		20hPa																			-					
		50hPa																								
	_	100hPa																								
	Temp	200hPa 500hPa																					•			
		700hPa																								
									A																	
		850hPa							•	_													^			
		1000hPa							A																	

		N. America								Hem			S. Hemisphere Tr Day Day Day Day Day Day Day Day Day Day									ropics				
			Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Da 10
		10hPa																								
		20hPa																								Г
		50hPa																								
		100hPa																								
	Heights	200hPa																								
		500hPa			•				A		•															
		700hPa			•				A			•														Γ
		850hPa							•			•														T
Bias		1000hPa																								T
		10hPa																								T
		20hPa																								T
		50hPa																			•	V				Γ
		100hPa																								Ī
	Wind	200hPa								•																Γ
	Speed	500hPa	•																							
		700hPa																				lack				Π
		850hPa																								T
		1000hPa																								T
		10hPa																								
		20hPa																								
		50hPa																								
		100hPa	•					þ																		
	Temp	200hPa																								
	1	500hPa																								
		700hPa														•							•			L
		850hPa			•	•			•			•														
		1000hPa							▼	•	•	•														
								Sco	reca	rd S	ymbo	ol Le	gend													_
▲ C384mx0	25_2dvar_gfs is b	etter than C3841	mx025	contro	ol_gfs	at the 9	99.9% s								r_gfs is	wors	e than (C384m	x025_	contro	l_gfs a	at the 9	9.9% s	ignific	ance le	eve
C384mv(25_2dvar_gfs is b	etter than C384ı	mx025	contro	ol gfs	at the 9	99% sig	nifica	nce lev	/el		C384	mx025	2dva	r gfs is	wors	e than (C384m	x025	contro	ol gfs a	at the 9	9% sig	nificar	ice lev	el


- Forecast impact experiment shows generally positive impact of the 2DVar snow analysis
 - ~12 km, 3DVar for atmosphere
 - Sep 1 2024 -> May 31 2025
 - 10 day forecasts, launched every 5 days

No statistically significant difference between C384mx025_2dvar_gfs and C384mx025_control_gfs Not statistically relevant

Experiments / figures by Jiarui Dong & Cory Martin


Summary / Land DA for GFSv17

- GFSv17 planned to include a major upgrade to our land DA
 - Introduce strongly coupled EnKF soil moisture and soil temperature analysis (pending successful forecast impact experiments with GFSv17 prototype)
 - Upgrade snow DA to directly assimilate observations with a JEDI-based 2DVar
- These updates will bring NOAA's land DA up to (ahead of?) international standards
- Experiments to date show significantly improvements to land and atmospheric states from the upgraded land DA

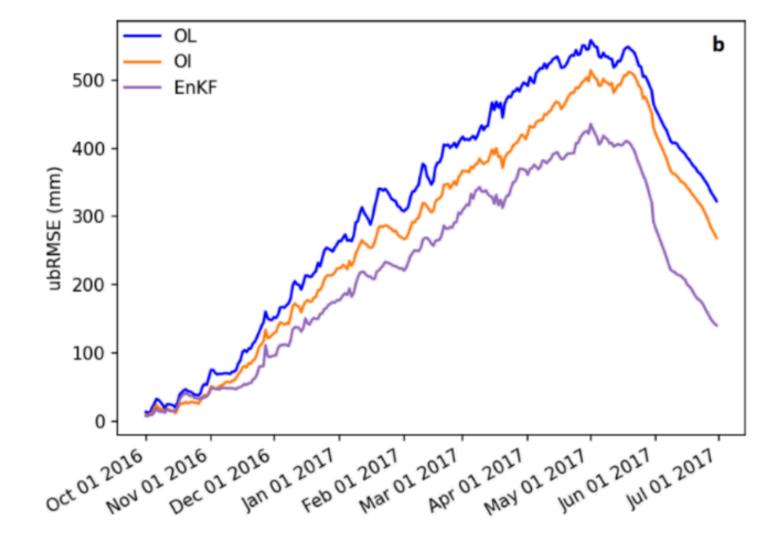
Next Steps / Land DA beyond GFSv17

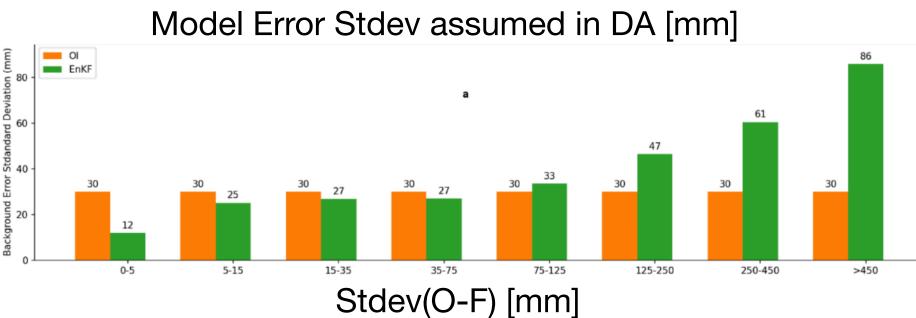
- Exploring implementing hybrid EnVar for soils and snow
 - Snow: Tseganeh Gichamo (Lynker at EMC) Compared 2DVar, EnKF, and Hybrid 2DEnVar for assimilation of station snow depth in JEDI in land-only experiments; improved performance from hybrid (and EnKF)
 - Soils: Yanjun Gan (CIRES, at PSL) to implement a 3DVar soil moisture analysis in JEDI (SFS, Year 3 project)
- Addition of new obs (satellite soil moisture info, LST), and new control variables (snow temperature; see Yanjun Gan's poster)

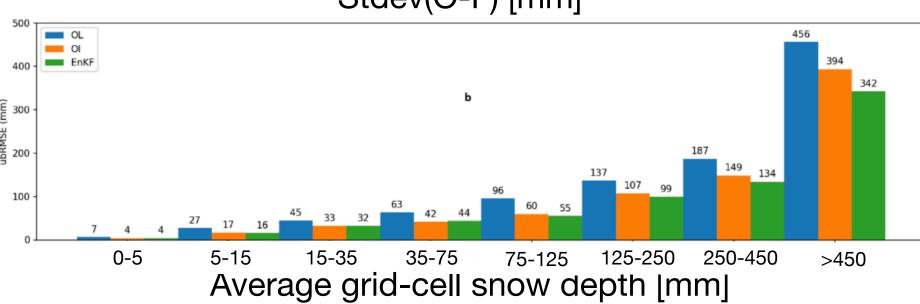
Thanks for Listening

clara.draper@noaa.gov

Snow DA Beyond GFSv17


With Tseganeh Gichamo (Lynker at EMC):


- For assimilation of snow depth observations, the EnKF outperforms the 2DVar
 - Snow depth errors vary enormously in space and time
- For assimilation of snow cover, EnKF can struggle to add missing snow
- Early experiments using Hybrid 2DEnVar (in JEDI) show similar performance to EnKF, for assimilation of snow depth observations
 - Can we improve snow cover assimilation with hybrid DA?
 - Hybrid approach also more in-line with atmospheric DA


With Yanjun Gan (PSL, CIRES):

 Developing an EnKF snow temperature analysis (see today's poster)

Snow Depth Error Stdev against withheld observations [mm]

Gichamo, et al, J Hydro (2025)

