
The Coastal Modeling Framework

Code development and infrastructure

Ufuk Turuncoglu & UFS Coastal Team*
NCAR/CGD/CSEG/ESMF

UFS Coastal

It includes additional components:

ADCIRC FVCOM PaHM ROMS SCHISM

GeoGate

Slightly modified components:

CMEPS CDEPS CICE WW3

Forks for sub-components (shared with UFS WM)

CMEPS

 It includes new coupling mode called as coastal. There is a plan to merge it with ufs coupling mode once UFS Coastal development is mature enough.

CDEPS

 One additional data mode called as <u>atmmesh</u> and also minor modification in ERA5 data mode (missing variables are added for CICE coupling)

WW3

 It has additional support to build WW3 tools and also running standalone WW3 configurations under UFS Coastal

CICE6

 Modification for updating open boundaries for regional coupling (PR #174, CICE fork PR #2)

UFS Coastal RTs

- UFS Coastal inherits RT framework from UFS WM
- Includes additional UFS Coastal specific RTs to test the capability
 - There is at least one DATM coupled test for each new ocean model component
 - + coupled configurations like
 - DATM+SCHISM-WW3
 - DATM-DOCN-CICE and DATM-SCHISM-CICE (will be available soon)
 - The existing RTs are ported from old CoastalApp
 - BUT, we are in a transition to move more realistic configurations
 - Duck NC case is used for SCHISM coupled configurations (PR #179)
 - Runs in every PR to the UFS Coastal

Main philosophy to maintain UFS Coastal

- Since nothing is pushed to UFS WM level -> RULE #1: DO NOT DIVERGE
 - Keep changes very minimal in the UFS Coastal (or WM) infrastructure
 - RULE #2: CAREFUL TESTING if we need to change any component shared with UFW WM - tests need to pass
 - As an example, we tested modifications for new regional CICE configuration with global fully coupled S2S configuration
 - **RULE #3: ISOLATE CHANGES** as much as possible and create PR/s in the authoritative repositories if it is possible -> sync fork
 - RULE #4: REGULARLY SYNC WITH UFS WM authoritative repository
 - It involves fixing issues that are raised in the merge process (i.e. *use_cmeps* flag added to WW3 coupling interface was creating issue in UFS Coastal)

Challenges - Model Level

- Challenge: UFS WM is evolving too fast. Actually it is a good thing for UFS WM, BUT
 - Nothing is exposed to UFS WM in terms of UFS Coastal development
 - It is hard to test UFS Coastal with every PR that goes into UFS WM. There is no enough bandwidth (human+compute) in UFS Coastal team

- Automated testing capability (GitHub CI/CD, Jenkins)
- More frequent and regular sync with UFS WM
 - Minimize the issues -> requires more work to fix conflicts/issues
- Pushing existing development in UFS Coastal to UFS WM
 - This requires commitment from component developers (hard to achieve)
 - + requires decision in management level

Challenges - Component Level

- Challenge: Lack of testing in the component side
 - The development in the component side is ongoing independently without enough testing with UFS Coastal (i.e. changes that is not backward compatible)
 - The component developers are not following best practices in terms of code development ("cap" and model) -> merge code without testing
 - It leads compile time and/or runtime issues in the UFS Coastal
 - Component developers does not have enough bandwidth to maintain the code

- Providing an easy to use work/testing environment (possible integrated with CI/CD) to component developers to test their model easily with UFS Coastal
 - Able to update component -> run -> report about results

Challenges - External users/collaborators

- Challenge: Request for help to bring new model configurations
 - Might require experience in multiple model components (incl. coupling layer) and model infrastructure (RTs system etc.)
 - Requires vast amount of time to find the issues and fix them
 - Lack of experience in managing/working on multi-component GitHub repositories

- Tightly engaging with the community by providing training about overall infrastructure (incl. git and RT framework), components and their coupling layers
- Sharing training videos and make those accessible by the community
- Existing tests could be used as a reference -> need more diverse and realistic test cases defined under UFS Coastal

Challenges - Application Level

- Challenge: keep components of the application synced + supporting more configs.
 - It uses UWTools as a workflow manager
 - Issues/changes in the model and/or workflow manager might break the application
 - Lack of regular testing in the application level -> porting is also challenging

- Need to develop robust automated testing capability (GitHub CI/CD, Jenkins) in the application layer too
- Encourage users to test and use application -> not the model
- Shared input data and configurations through the cloud -> <u>AWS</u>
- Document workflow and test cases in a clear and understandable way

Questions?

Ufuk Turuncoglu

turuncu@ucar.edu

You could also create discussion in our GitHub repository for further question/s and collaboration:

https://github.com/oceanmodeling/ufs-weather-model/discussions